AllFusion™ Endevor®

Change Manager

APl Guide
4.0

a)

Computer Associates™

ENAPI1400

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation ““as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,

goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

First Edition, Decemeber 2002

© 2002 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1. Welcome to the Application Program Interface 1-1
1.1 Overview 1-2
1.1.1 Assumed Knowledge 1-3
1.2 Endevor API Architecture 1-4
1.3 API Structures 1-5
1.3.1 The Control Structure 1-5
1.3.2 The Request Structure 1-6
1.3.3 The Request Extension Structure 1-6
1.3.4 The Response Structure 1-6
1.4 API Function Calls 1-7
1.5 Imitializing API Structures 1-12
1.5.1 Assembler Programs 1-12
1.5.2 COBOL Programs 1-12
1.6 Starting Up and Shutting Down the API Server 1-14
1.7 Calling the API from an Assembler Program 1-15
1.8 Calling the API from a COBOL Program 1-16
1.9 Checking API Return and Reason Codes 1-17
1.10 Writing Messages to the Message File 1-18
1.11 Writing Responses to a Response File 1-19
1.12 Sample Applications 1-20
1.13 Documentation Overview 1-21
1.14 Name Masking 1-22
1141 Usage 1-22
Chapter 2. API Function Calls 2-1
2.1 Overview 2-2
2.2 Control Structure 2-3
2.2.1 AACTL Control Structure Fields 2-3
2.3 API Function Calls 2-8
2.3.1 Understanding Logical and Physical Mapping Requests 2-8
2.4 Request Extension 2-10
2.4.1.1 AAREB_RQ Request Extension Structure Fields 2-10

2.5 Add Element Action 2-11
2.5.1 AEADD_RQ Request Structure Fields 2-11
2.6 Delete Element Action 2-13
2.6.1 AEDEL_RQ Request Structure Fields 2-13
2.7 Extract Element and Component Data 2-15
2.7.1 Element and Component Extraction Types 2-15
2.7.2 AEELM_RQ Request Structure Fields 2-16

Contents iii

2.7.3 AEELM_RS Response Structure Fields
2.7.4 Element Extract and Component Data Record Layouts
2.7.4.1 Element Extract, No Format Record Layout
2.7.4.2 Element Extract, Browse Record Layout
2.7.4.3 Element Extract, Change Record Layout
2.7.4.4 Element Extract, History Record Layout
2.7.4.5 Component Extract, Browse Record Layout
2.7.4.6 Component Extract, Change Record Layout
2.7.4.7 Component Extract, History Record Layout
2.8 Generate Element Action
2.8.1 AEGEN_RQ Request Structure Fields
2.9 List Element
2.9.1 ALELM_RQ Request Structure Fields
2.9.1.1 Information About Action Options
2.9.1.2 Information About Selection Criteria
2.9.2 List Element Response Structures
2.9.3 ALELM_RS Response Structure Fields
2.9.3.1 Information About the Last Action
2.9.3.2 Information About the Element Base
2.9.3.3 Information About the Element Delta (Last Level)
2.9.3.4 Information About the Component List Base
2.9.3.5 Information About the Component List Delta
2.9.3.6 Information About the Last Element Move
2.9.3.7 Information About the Last Add or Update Data Set
2.9.3.8 Information About the Element Processor Execution
2.9.3.9 Information About the Last Element Retrieve
2.9.3.10 Information About the Package Last Executed Against the
Element Source
2.9.3.11 Information About the Package Last Executed Against the
Element Outputs
2.9.3.12 Information About the Last "FROM" Endevor Location
29313 Other Fields
2.9.3.14 Information About the Package for which the Element is Locked
2.9.3.15 ALELB_RS Response Structure Fields
2.9.3.16 ALELX_RS Response Structure Fields
2.10 Move Element Action
2.10.1 AEMOV_RQ Request Structure Fields
2.11 Print Element Action
2.11.1 AEPRE_RQ Request Structure Fields
2.12 Print Member Element Action
2.12.1 AEPRM_RQ Request Structure Fields
2.13 Retrieve Element Action
2.13.1 AERET_RQ Request Structure Fields
2.14 Signin Element Action
2.14.1 AESIG_RQ Request Structure Fields
2.15 Transfer Element Action
2.15.1 AETRA_RQ Request Structure Fields
2.16 Update Element Action
2.16.1 AEUPD_RQ Request Structure Fields
2.17 Enterprise Package Function
2.17.1 Enterprise Package Fields

2-37

2-37
2-37
2-38
2-38
2-38
2-40
2-41
2-41
2-43
2-43
2-45
2-45
2-46
2-46
2-48
2-48

iv. APl Guide

2.17.2 Enterprise Package Restrictions 2-57

2.18 Approve Package 2-59
2.18.1 APAPP_RQ Request Structure Fields 2-59
2.19 Backin Package 2-60
2.19.1 APBKI_RQ Request Structure Fields 2-60
2.20 Backout Package 2-61
2.20.1 APBKO_RQ Request Structure Fields 2-61
221 CastPackage 2-62
2.21.1 APCAS_RQ Request Structure Fields 2-62
2.22 Commit Package 2-65
2.22.1 APCOM_RQ Request Structure Fields 2-65
2.23 Define Package 2-66
2.23.1 APDEF_RQ Request Structure Fields 2-66
2.23.1.1 Note Fields 2-68

2.24 Delete Package 2-69
2.24.1 APDEL_RQ Request Structure Fields 2-69
2.25 Deny Package 2-70
2.25.1 APDEN_RQ Request Structure Fields 2-70
2.26 Execute Package 2-71
2.26.1 APEXE_RQ Request Structure Fields 2-71
2.27 List Package Action Summary 2-72
2.27.1 ALSUM_RQ Request Structure Fields 2-72
2.27.2 ALSUM_RS Response Structure Fields 2-72
2.27.2.1 Source Location Information 2-73
2.27.2.2 Data Available When Locationis Cor A 2-73
2.27.2.3 Data Available When Locationis D, ForP 2-74
2.27.2.4 Target Location Information 2-74
2.27.2.5 Data Available When Locationis Cor A 2-75
2.27.2.6 Data Available When Locationis D, ForP 2-76
2.27.2.7 Data Available When Location is: C, A, D, ForP 2-76

2.28 List Package Approvers 2-77
2.28.1 ALAPP_RQ Request Structure Fields 2-77
2.28.2 ALAPP_RS Response Structure Fields 2-77
2.29 List Package Backout Information 2-79
2.29.1 ALBKO_RQ Request Structure Fields 2-79
2.29.2 ALBKO_RS Response Structure Fields 2-79
2.30 List Package Cast Report 2-81
2.30.1 ALCAS_RQ Request Structure Fields 2-81
2.30.2 ALCAS_RS Response Structure Fields 2-81
2.31 List Package Correlation 2-82
2.31.1 ALCOR_RQ Request Structure Fields 2-82
2.31.2 ALCOR_RS Response Structure Fields 2-82
2.32 List Package Header 2-84
2.32.1 ALPKG_RQ Request Structure Fields 2-84
2.32.2 List Package Response Structure Fields 2-88
2.32.3 ALPKG_RS Response Structure Fields 2-88
2.32.4 ALPKB_RS Response Structure Fields 291
2.33 List Package SCL 2-93
2.33.1 ALSCL_RQ Request Structure Fields 2-93
2.33.2 ALSCL_RS Response Structure Fields 2-93

Contents v

2.34 Package Correlation 2-95

2.34.1 APCOR_RQ Request Structure Fields 2-95
235 Reset Package 2-96
2.35.1 APRES_RQ Request Structure Fields 2-96
2.36 Submit Package Request 2-97
2.36.1 APSUB_RQ Request Structure Fields 2-97
2.36.1.1 Jobcard Location Information 2-97
2.36.1.2 Submit TO Location Information 2-98
2.36.1.3 Action Options 2-98
2.36.1.4 CA7 Action Options 2-99

2.37 List Approver Group 2-100
2.37.1 ALAGR_RQ Request Structure Fields 2-100
2.37.2 ALAGR_RS Response Structure Fields 2-100
2.38 List Approver Group Junctions 2-102
2.38.1 ALAGIJ_RQ Request Structure Fields 2-102
2.38.2 ALAGIJ_RS Response Structure Fields 2-103
2.39 List Components/Where-used 2-104
2.39.1 ALCMP_RQ Request Structure Fields 2-104
2.39.1.1 Element Location Data — Request Type (E) 2-104
2.39.1.2 Member Location Data — Request Type (M) 2-105
2.39.1.3 Object Location Data — Request Type (O) 2-105
2.39.1.4 Comment Location Data — Request Type (C) 2-105
2.39.1.5 Output Filters — Request Type (C, E, M, 0) 2-106
2.39.1.6 Build Generate Action SCL 2-106
2.39.2 ALCMP_RS Response Structure Fields 2-107
2.39.2.1 RECTYP 1 or 3 Format 2-108
2.39.22 RECTYP 2 or 4 Format 2-109
2.39.23 RECTYP S or 6 Format 2-109

240 List Data Set 2-110
2.40.1 ALDSN_RQ Request Structure Fields 2-110
2.40.2 ALDSN_RS Response Structure Fields 2-111
241 List Directory 2-112
2.41.1 ALDIR_RQ Request Structure Fields 2-112
2.41.2 ALDIR_RS Response Structure Fields 2-113
2.42 List Environment 2-115
2.42.1 ALENV_RQ Request Structure Fields 2-115
2.42.2 ALENV_RS Response Structure Fields 2-116
243 List Processor Group 2-118
2.43.1 ALPGR_RQ Request Structure Fields 2-118
2.43.2 ALPGR_RS Response Structure Fields 2-119
244 List Site 2-121
2.44.1 ALSIT_RQ Request Structure Fields 2-121
2.44.2 ALSIT_RS Response Structure Fields 2-121
245 List Stage 2-125
2.45.1 ALSTG_RQ Request Structure Fields 2-125
2.45.2 ALSTG_RS Response Structure Fields 2-126
246 List Subsystem 2-127
2.46.1 ALSBS_RQ Request Structure Fields 2-127
2.46.2 ALSBS_RS Response Structure Fields 2-128
247 List System 2-130
2.47.1 ALSYS_RQ Request Structure Fields 2-130

vi API Guide

2.47.2 ALSYS_RS Response Structure Fields 2-131

248 List Type 2-133
2.48.1 ALTYP_RQ Request Structure Fields 2-133
2.48.2 ALTYP_RS Response Structure Fields 2-134

Chapter 3. API Return Codes and Reason Codes 3-1

3.1 Overview 3-2

3.2 Return Code and Reason Code Descriptions 3-3

3.3 Error Messages 3-14

Chapter 4. API Execution Reports and Trace Facilities 4-1

4.1 OVerview 4-2
4.1.1 Execution Reports 4-2
4.1.2 Trace Facilities 4-2

4.2 API Execution Reports 4-3
4.2.1 Define Package Action Function Call Sample Report 4-3
4.2.2 Element Action Function Call Sample Report 4-4
4.2.3 Inventory List Function Call Sample Report 4-5
4.2.4 List Package Action Function Call Sample Reports 4-5
4.2.5 Update Package Action Function Call Sample Reports 4-7

4.3 The API Diagnostic Trace — BCIPAPI 4-9

4.4 The API Internal Trace — ENSTRAPL 4-10

Appendix A. Sample API Programs A-1

Al Overview A-2

A.2 Executing an API Program A-3
A2.1 Description A-3

A.3 Sample COBOL Program — CCIDRPT1 A-5
A.3.1 Description A-5
A.3.2 CCIDRPTI1 Output Report A-6
A.3.3 JCL to Execute CCIDRPT1 — BCIJRAPI A-7

A.4 Sample List Environment Function Call — ENHAAPGM A-10
A4l Description A-10
A.4.2 JCL to Execute ENHAAPGM — BCIJAPGM A-10

A.5 Sample Element Action Function Call — ENHAEPGM A-12
A.S5.1 Description A-12
A.5.2 JCL to Execute ENHAEPGM — BCIJEPGM A-12

A.6 Sample List Package Action Function Call — ENHAPLST A-15
A.6.1 Description A-15
A.6.2 JCL to Execute ENHAPLST — BCIJPLST A-15

A.7 Sample Update Package Action Function Call — ENHAPUPD A-17
A.7.1 Description A-17
A.7.2 JCL to Execute ENHAPUPD — BCIJPUPD A-17

A.8 Sample Inventory List Function Call — ENTBJAPI A-19
A.8.1 Description A-19
A.8.2 JCL to Execute ENTBJAPI — BCIJAAPI A-19

Index X-1

Contents vii

viii APl Guide

Chapter 1. Welcome to the Application Program
Interface

Chapter 1. Welcome to the Application Program Interface 1-1

1.1 Overview

1.1 Overview

Endevor is a comprehensive, automated solution for managing the entire software
development life cycle. From initial design through distribution, it guarantees
consistency and control through process automation and life cycle administration.

This document introduces the Endevor Application Program Interface (API). The
Endevor API lets you retrieve and update information programmatically from
Assembler or an LE-compliant language. This document describes how to use the API
and describes sample programs and contains sample JCL to help you implement the
APL

Endevor functions supported by the API can be categorized into four groups:

= Inventory Query and List Functions

Allows you to request inventory lists and perform queries. This includes
elements, environments, systems, subsystems, and all other inventory information
stored in the MCF.

1 Element Extract

Allows you to extract element and/or component source from the base and delta
libraries. Also, you can extract summary, changes, and history information
associated with element or component data.

1 Element Actions

Allows you to perform one of the element actions, such as ADD, GENERATE,
MOVE, or PRINT ELEMENT. These functions retrieve information from the
MCEF and base and delta libraries, and may update these files, depending on the
function.

The SCL SET OPTIONS clause is not supported. All SCL syntax is supported
unless otherwise noted. For more information, see the SCL Reference Guide.

Actions not supported include:

— ARCHIVE

- COPY

— LIST from archive

— LIST member from external library

— RESTORE

— TRANSFER element to archive data set

— TRANSFER from archive data set or unload tape
1 Package Actions

Allows you to perform package list and update actions such as approve, cast,
delete or execute.

1-2 API Guide

1.1 Overview

Masking is not allowed for any of the package update actions. You need to
specify the fully qualify package id. The following list shows packages and the
clauses they do not support:

Approve does not support 'notes' clause.

Commit does not support 'older than' clause.

Delete does not support 'older than' and 'package status' clauses.
— Deny does not support notes' clause.

— Execute does not support 'execution window' and 'package status' clauses.

1.1.1 Assumed Knowledge

To use the Endevor API, we assume that you are familiar with Endevor. In addition,
knowledge of COBOL or Assembler programming concepts is expected. Finally, you
must be familiar with both the layout and runtime usage of structures; the API uses
structures to request and receive information from Endevor.

Chapter 1. Welcome to the Application Program Interface 1-3

1.2 Endevor API Architecture

1.2 Endevor API Architecture

To invoke the Endevor API, an application program calls the Endevor API interface
program, ENASNDVR, passing it two, three or four parameters: the control structure, a
request structure, and depending on the function call, a request extension structure and
a response structure. List and extract function calls require all three structures.
Element action function calls require the control and request structures.

Note: Your program that invokes the API must reside in an authorized library. No
other restrictions apply to compiling or linking a user program.

On the first function call to the ENASNDVR interface program, the Endevor API
server is attached and initialized. The user's request is processed and the results are
placed into the response structure if it exists. The control structure is also updated
with return code and reason code information. The API server remains active and is
available to process additional requests until a request is received to shutdown the API.

The following diagram shows how the Endevor API processes an API function call:

User Program
COBOL or Assembler

Initialize API Structures
Set Control Structure
Set Request Structure
Set Request Extension
Structure

Call Endevor API

Examine Control and
Response Structures
Process Optional File

ENASNDVR T T Endevor
= Files
— Package
Control Request Request Response é
Structure Structure Extension Structure —
Structure fre——
API «|| MCF
—
Validates Request Output Files

Invokes Endevor o

Ly Eaa——— -

Updates Control Structure Extract Message

Updates Response Structure File File
Writes to Output File

You can also use the CONAPI utility to execute a program that issues API function
calls from an Endevor processor. For more information about this utility, see the
Extended Processors Guide.

To execute a program that issues API function calls outside of a processor, see A.2,
“Executing an API Program” on page A-3.

1-4 API| Guide

1.3 API Structures

1.3 API Structures

There is one control structure used for all types of function calls and a unique request
and response structure for each type of function call. Each structure consists of a
header area, followed by a data area. It is the responsibility of the user program to
initialize all the structures prior to calling the API and to populate some of the data
area fields in the control and request structures.

The API Assembler macros and COBOL copybooks are provided in
iprfx.iqual. SOURCE for each API function call.

The structure naming conventions are as follows:

Name Description

ExHAACTL Control structure. Where x is N for Assembler macro and C
for COBOL copybook.

ExHAEeee Element actions. Where x is N for Assembler macro and C
for COBOL copybook. Where eee is an element action such
as Add, Generate or Delete.

ExHAPppp Package actions. Where x is N for Assembler macro and C
for COBOL copybook. Where ppp is a package action such
as Define or Cast.

ExHALiep List request. Where x is N for Assembler macro and C for
COBOL copybook. Where iep is one of the inventory,
element or package list actions.

ExHAAREB Request Extension structure. Where x is N for Assembler
macro and C for COBOL copybook.

1.3.1 The Control Structure

The control structure contains fields that:
® Start up and shutdown the API server.

® Define the message and response files where the information from each function
call is placed. Each API function call opens and closes a response file. If two or
more API function calls use the same response file, only the response to the last
function call is maintained; data from the prior function call is overwritten.

® Contain the reason and return codes about the function call that you have

performed.

For a description of the data areas included in the control structure, see 2.2, “Control
Structure” on page 2-3.

Chapter 1. Welcome to the Application Program Interface 1-5

1.3 API Structures

1.3.2 The Request Structure

The request structure contains the fields required to perform an API function call. In
this structure, you define location information and action options.

There is one unique request structure for each type of request. The calling program
must populate the fields within this structure. The structure informs the API which
action is being requested, provides the 'to and from' location specifications and
indicates which action options are in effect. In cases where an action option has a
default value and you intend to use the default, you do not need to code the option.
Except for several noted cases, such as the SEARCH map option, if you do not code
an option, the option is not enabled.

1.3.3 The Request Extension Structure

This request block defines the parameters necessary to process long name elements or
HEFS file structures. If you are not processing long name elements or HFS files, this
block can be ignored. If specified, it must be the third parameter in the calling
sequence to the API interface program, ENASNDVR, following the request block.

1.3.4 The Response Structure

The response structure contains header information followed by the data related to the
request you made. This structure does not exist for element and package update type
action calls. It is returned for list type action calls. One and only one response
structure is returned to the calling program. The data returned in the response
structure is unique for each type of request.

The response or list file DDN (AACTL_LIST_DDN) field defined in the Control
Structure determines which response record is returned to the calling program in the
response structure. If you specify a value in this field, the first response is returned to
the calling program in the response structure.

Note: All dates return in DDMMMY'Y (31JANO02) format and all times return in
HH:MM (23:59) format.

1-6 API Guide

1.4 API Function Calls

1.4 API Function Calls

The Endevor API provides Assembler macros and corresponding COBOL copybooks
that correspond to the function calls. These are delivered in the iprfx.iqual. SOURCE

data set.

For each Assembler API macro, except the initialization macro, APISINIT, there is a
corresponding COBOL copybook with a similar name. For example, the ENHALENV
Assembler macro has a corresponding COBOL copybook of a similar name except that
Assembler macros begin with ENH and COBOL copybooks begin with ECH. In
addition, COBOL users have a copybook, ENCCNST, that contains Endevor API

constants.

The following table summarizes the types of API function calls that you can make and
their corresponding structure names. Each extract and list function call has its own
unique request and response structure. Response structures are not applicable for
element action function calls.

Where x is N for Assembler macros and C for COBOL

copybooks.

API Function Call Macro/Copybook Request Structure Response Structure
Name Name Name

Add Element ExHAEADD AEADD_RQ N/A
Defines the parameters necessary to
add an element.
Approve Package ExHAPAPP APAPP_RQ N/A
Defines the parameters necessary to
approve a package.
Backin Package ExHAPBKI APBKI_RQ N/A
Defines the parameters necessary to
backin a package.
Backout Package ExHAPBKO APBKO_RQ N/A
Defines the parameters necessary to
backout a package.
Cast Package ExHAPCAS APCAS_RQ N/A
Defines the parameters necessary to
cast a package.
Commit Package ExHAPCOM APCOM_RQ N/A

Defines the parameters necessary to
commit a package.

Chapter 1. Welcome to the Application Program Interface 1-7

1.4 API Function Calls

API Function Call

Macro/Copybook

Name

Request Structure

Name

Response Structure

Name

Define Package

Defines the parameters necessary to
create or modify a package.

ExHAPDEF

APDEF_RQ

N/A

Delete element

Defines the parameters necessary to
delete an element.

ExHAEDEL

AEDEL_RQ

N/A

Delete Package

Defines the parameters necessary to
delete a package.

ExHAPDEL

APDEL_RQ

N/A

Deny Package

Defines the parameters necessary to
deny approval of a package.

ExHAPDEN

APDEN_RQ

N/A

Execute Package

Defines the parameters necessary to
execute a package.

ExHAPEXE

APEXE_RQ

N/A

Extract Element/Component Request

Extracts the element source or element

component information from an

explicit Endevor location and element

level into your specified file.

ExHAEELM

AEELM_RQ

AEELM_RS

Generate Element

Defines the parameters necessary to
generate an element.

ExHAEGEN

AEGEN_RQ

N/A

List Approver Group

Extracts approver group information
for an environment.

ExHALAGR

ALAGR_RQ

ALAGR_RS

List Approver Group Junction

Extracts approver junction information

for an environment.

ExHALAGJ

ALAGJ_RQ

ALAGIJ_RS

List Components

Defines the parameters necessary to
produce a component list for an
element or a "where-used" list for a
component.

ExHALCMP

ALCMP_RQ

ALCMP_RS

1-8 API Guide

1.4 API Function Calls

API Function Call

Macro/Copybook

Name

Request Structure
Name

Response Structure
Name

List Dataset

Extracts Endevor data set information
under an environment, stage, and
system.

ExHALDSN

ALDSN_RQ

ALDSN_RS

List Directory

Defines the parameters necessary to
build a directory list of a file or to
build a list of CSECTs for a load
module.

ExHALDIR

ALDIR_RQ

ALDIR_RS

List Element

Extracts element information for an
environment and also mapped
locations.

ExHALELM

ALELM_RQ

ALELM_RS

List Environment

Extracts environment information and
also mapped environments.

ExHALENV

ALENV_RQ

ALENV_RS

List Package Action Summary

Defines the parameters necessary to list
element actions associated with a
package.

ExHALSUM

ALSUM_RQ

ALSUM_RS

List Package Approvers

Defines the parameters necessary to
produce a list of approvers for a
package.

ExHALAPP

ALAPP_RQ

ALAPP_RS

List Package Backout Information

Defines the parameters necessary to list
the backout information associated with
a package.

ExHALBKO

ALBKO_RQ

ALBKO_RS

List Package Cast Report

Defines the parameters necessary to list
a cast report associated with a package.

ExHALCAS

ALCAS_RQ

ALCAS_RS

List Package Correlation

Defines the parameters necessary to list
correlation records associated with a
package.

ExHALCOR

ALCOR_RQ

ALCOR_RS

Chapter 1. Welcome to the Application Program Interface 1-9

1.4 API Function Calls

API Function Call Macro/Copybook

Name

Request Structure

Name

Response Structure

Name

List Package Header ExHALPKG

Defines the parameters necessary to
provide a list of packages and the data
associated with.

ALPKG_RQ

ALPKG_RS

List Package SCL ExHALSCL

Defines the parameters necessary to list
the SCL associated with a package.

ALSCL_RQ

ALSCL_RS

List Processor Group ExHALPGR

Extracts processor information
including the symbolic overrides under
an environment, stage, system, and

type.

ALPGR_RQ

ALPGR_RS

List Site ExHALSIT

Extracts the site's definition.

ALSIT_RQ

ALSIT_RS

List Stage ExHALSTG

Extracts stage information for an
environment and also mapped stages.

ALSTG_RQ

ALSTG_RS

List Subsystem ExHALSBS

Extracts subsystem information for an
environment and also mapped
subsystems.

ALSBS_RQ

ALSBS_RS

List System ExHALSYS

Extracts system information for an
environment and also mapped systems.

ALSYS_RQ

ALSYS_RS

List Type ExHALTYP

Extracts type information for an
environment and also mapped types.

ALTYP_RQ

ALTYP_RS

Move Element ExHAEMOV

Defines the parameters necessary to
move an element.

AEMOV_RQ

N/A

Package Correlation ExHAPCOR

Defines the parameters necessary to
create, delete or modify a correlation
record associated with a package.

APCOR_RQ

N/A

1-10 API Guide

1.4 API Function Calls

API Function Call

Macro/Copybook
Name

Request Structure
Name

Response Structure
Name

Print Element

Defines the parameters necessary to
print an element.

ExHAEPRE

AEPRE_RQ

N/A

Print from External Library

Defines the parameters necessary to
print a member from an external
library.

ExHAEPRM

AEPRM_RQ

N/A

Reset Package

Defines the parameters necessary to
reset a package.

ExHAPRES

APRES_RQ

N/A

Request Extension

Defines the parameters necessary to
process long name elements or HFS
file structures.

ExHAAREB

AAREB_RQ

N/A

Retrieve Element

Defines the parameters necessary to
retrieve an element.

ExHAERET

AERET_RQ

N/A

Signin Element

Defines the parameters necessary to
sign in an element.

ExHAESIG

AESIG_RQ

N/A

Transfer Element

Defines the parameters necessary to
transfer an element.

ExHAETRA

AETRA_RQ

N/A

Update Element

Defines the parameters necessary to
update an element.

ExHAEUPD

AEUPD_RQ

N/A

COBOL Users: COBOL copybook field names are similar to the names used by the
Assembler macros except that COBOL substitutes the underscore character (_) with a
hyphen (-). For example, ALELM_RQ_PATH appears as ALELM-RQ-PATH.

See 2.9.1.1, “Information About Action Options” on page 2-27 for more information
on this field name.

See Chapter 2, “API Function Calls” on page 2-1 for detailed information about each
API function call and its use.

Chapter 1. Welcome to the Application Program Interface 1-11

1.5 Initializing API Structures

1.5 Initializing API Structures

Before you issue an API function call, you must first initialize the control, request,
request extension and response structures passed with the API function call. It is the
responsibility of the user program to initialize all the structures prior to calling the API
and to populate some of the data area fields in the control and request structures.

The following sections explain how to initialize API structures in Assembler and
COBOL programs.

1.5.1 Assembler Programs

Assembler users can use the APISINIT macro to initialize the control, request, and
response structures. Each structure has a fixed formatted header and can be initialized
by using APISINIT.

Note: The twelve-character header must not be initialized or modified by the user
program. If it is, the API function call fails with an "invalid request structure"
error condition. The initialization macro, APISINIT properly sets the header
information.

To initialize the ENHAACTL control structure, use this statement:
API$INIT STG=AACTL,BLOCK=AACTL

To initialize a request or response structure, use this APISINIT syntax:

API$INIT STG=structure name,BLOCK=structure name
where structure-name is the name of the API macro request or response structure.

For example, these statements initialize the request and response structure for the list
environment macro, ENHLENV:

API$INIT STG=ALENV_RQ,BLOCK=ALENV_RQ
API$INIT STG=ALENV_RS,BLOCK=ALENV_RS

1.5.2 COBOL Programs

To initialize API storage structures in COBOL programs, move blanks, zeros, or
explicit values in the fields, depending on the field type.

Note: COBOL copybook field names are similar to the names used by the Assembler
macros except:

® COBOL substitutes the underscore character (_) with a hyphen (-). For
example, AACTL_SHUTDOWN appears as AACTL-SHUTDOWN and
ALELM_RQ appears as ALELM-RQ.

® COBOL does not allow the use of the pound character (#). For example,
AACTL_#SELECTED appears as AACTL-SELECTED.

1-12 API Guide

1.5 |Initializing API Structures

The code below shows how to initialize the ECHAACTL control structure:
INITIALIZE AACTL-DATAAREA.

This code shows an example of initializing the request and response data portion of the
ECHALELM copybook.

INITIALIZE ALELM-RQ-DATAAREA.
INITIALIZE ALELM-RS-DATAAREA.

Note: The control, request, and response header portions of each copybook are
initialized by COBOL value clauses. These values must not be changed.

Chapter 1. Welcome to the Application Program Interface 1-13

1.6 Starting Up and Shutting Down the API Server

1.6 Starting Up and Shutting Down the API Server

Your first API function call automatically starts the API server, which transfers data to
and from Endevor and your application program. Your last API function call must
shut the API server down.

To shut down the API server, set the ECHAACTL Shutdown field to "Y'. Below is an
example of COBOL code setting the AACTL-SHUTDOWN field to 'N":

MOVE 'N' TO AACTL-SHUTDOWN.

1-14 API| Guide

1.7 Calling the API from an Assembler Program

1.7 Calling the API from an Assembler Program

The following Assembler code shows a sample API function call for a list environment
request. The code:

1.

PARMLIST DC
API$INIT STG=AACTL,BLOCK=AACTL

MvVC
MvC
MvC

API$INIT STG=ALENV_RQ,BLOCK=ALENV_RQ
API$INIT STG=ALENV_RS,BLOCK=ALENV_RS

Begins by defining the control structure through the ENHAACTL macro, and the
list environment function call request and response structures through the
ENHALENV macro.

Initializes the ENHAACTL control structure, sets the API server Shutdown field
(AACTL_SHUTDOWN) to 'N', and sets the DD names of the message and list
environment response files.

. Initializes the list environment function call request and response structures.

Defines the search criteria for the function call; in this case, the ALENV_RQ
fields are set to conduct a logical search in all environments and return after
finding the first occurrence.

. Loads the addresses of the ENHAACTL control structure, ALENV_RQ request

structure, and ALENV_RS response structure in a parameter list stored in register
1.

Calls the API server using the ENASNDVR interface program.

ENHAACTL DSECT=NO

ENHALENV DSECT=NO
3F'0’
Initialize the ctl block
Do not shutdown API server
Set Message DD name
Set DD name for List Env
Initialize the req block
Initialize the rsp block

AACTL_SHUTDOWN,C'N'
AACTL_MSG_DDN,=CL8'MSG3FILE"
AACTL_LIST DDN,=CL8'EXT1ELM'

MVI ~ ALENV_RQ_PATH,C'L' Set to Logical Search
MVI ~ ALENV_RQ_RETURN,C'F' Set to return first hit
MVI ~ ALENV_RQ_SEARCH,C'A’ Set search to ALL

MVC ALENV_RQ_ENV,=CL8'PRDENV' Set the environ name

LA R1,PARMLIST Set up the parm 1list

LA R14,AACTL R1 -> parmlist

ST R14,0(0,R1) 0(,R1) = A(AACTL)

LA R14,ALENV_RQ 4(,R1) = A(ALENV_RQ)

ST R14,4(0,R1) 8(,R1) = A(ALENV_RS)

LA R14,ALENV_RS

ST R14,8(0,R1)

01 8(R1),Xx'80" TURN ON HIGHORDER BIT
L R15,=V(ENASNDVR)

BALR R14,R15 CALL SERVER THRU ENA$NDVR

Chapter 1. Welcome to the Application Program Interface 1-15

1.8 Calling the API from a COBOL Program

1.8 Calling the API from a COBOL Program

Copybooks are provided for all API structures. Below are examples of API function
calls from a COBOL program. Note that the first parameter refers to a control
structure, the second a request structure which is followed by a response structure:

Template for List and Extract Function Call
CALL EAC-ENDEVOR-APINAME USING AACTL ALELM-RQ ALELM-RS.

Template for Element Action Function Call
CALL EAC-ENDEVOR-APINAME USING AACTL AEGEN-RQ.

In the above examples, EAC-ENDEVOR-APINAME contains the name of the Endevor
API interface program which is set to the value of ENA$SNDVR.

In the first example, ALELM-RQ describes a list element request structure and the
ALELM-RS describes the list element response structure. Through the request
structure, Endevor inventory data, pathing information, and return options are
specified. After the API processes the list element request, it places the first response
in the list element response structure, ALELM-RS. All data responses, including the
first, are written to the file identified by the AACTL-LIST-DDN field. If this field is
not specified, no responses are written to this file.

1-16 API Guide

1.9 Checking API Return and Reason Codes

1.9 Checking APl Return and Reason Codes

Once the API server processes an API function call, it is recommended to check the
return and reason codes returned to the control structure. The return code indicates the
severity of the error and the reason code indicates the cause of the error. For example,
return code 04 combined with reason code 002 indicates a warning message resulting
from not finding a requested stage. See Chapter 3, “API Return Codes and Reason
Codes” on page 3-1 for a compete list of the return and reason codes you might
expect to get.

To check the return and reason codes returned from an API function call, examine the
AACTL_RTNCODE and AACTL_REASON fields in the control structure. You can
also check the return code value in register 15. Your return code will be one of the
following values:

Return Code Description

00 I - Informational. Processing concluded normally. Message is
issued for informational purposes only.

04 W - Warning. An error was encountered which was not serious
enough to terminate processing.

08 C - Caution. An error was encountered which may prevent further
processing.
12 E - Error. An error was encountered that terminated processing of

the current action but allowed Endevor to continue with the next
action request.

16 S - Severe. A severe error was encountered that prevented Endevor
from completing the requested action. Processing will terminate
immediately. This category includes internal, system, and I/O errors.

20 F - Fatal. No further processing is possible.

In addition, you should check the value of the ACCTL_HI_MSGID field, which
contains one of the following values:

® The highest API message ID encountered while processing the API function call.
The value of this field has the following format:

APIxxyyyz
where xx is the return code, yyy is the reason code, and z is the severity letter.

B The error message ID returned by Endevor. This could be a source management
error, inventory management error, and so on.

Chapter 1. Welcome to the Application Program Interface 1-17

1.10 Writing Messages to the Message File

1.10 Writing Messages to the Message File

You must define a message file to write output messages to. The API server writes
the messages to the message file DD name that you supply to the AACTL_MSG_DDN
field. Endevor messages, such as the Execution Report and Source and Inventory
Management errors (if any), are recorded to this data set. This is NOT a required
field, but it is highly recommended that a file name be provided. If one is not
specified, a default DD name of APIMSGS is used. It is the responsibility of the user
to allocate this data set prior to executing an API function call. For example, if your
JCL contains the following DD statement, assign MSG3FILE to the
AACTL_MSG_DDN field:

//MSG3FILE DD DSN=&&MSG3FILE,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK, (5,5)),
// DCB=(RECFM=FB,LRECL=133,BLKSIZE=13300)

The API server manages this file. It is not necessary to define, open, or close this file
in your application program.

1-18 API Guide

1.11 Writing Responses to a Response File

1.11 Writing Responses to a Response File

To write the API responses to a file, define a response file that has a variable block
record format and logical record length of 2048 bytes. For example:

//EXT1ELM DD DSN=&&EXT1ELM,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK, (5,5)),
// DCB=(RECFM=VB,LRECL=2048,BLKSIZE=22800)

The file DCB must be: RECFM=VB,LRECL=2048 (calculate the minimum record
size by adding 4 to the size of the response structure for the function you are
requesting. In most cases, 2048 is large enough).

The API server writes the responses to the response file DD name that you supply to
the AACTL_LIST_DDN field. The API server manages this file. It is not necessary
to define, open, or close this file in your application program unless you want to read
it as input after the API server has finished writing all the responses. If you are only
performing a query and do not need a file of responses, leave this field blank. The
total count of records selected is included in the Execution Report and the
AACTL_#SELECTED field. For example, if your JCL contains the DD statement
above, assign EXT1ELM to the AACTL_LIST_DDN field.

Note: If you request the list component/where-used function with the build SCL
option, the file DCB must be: RECFM=FB,LRECL=80.

Chapter 1. Welcome to the Application Program Interface 1-19

1.12 Sample Applications

1.12 Sample Applications

To help you get started using the API, source code for sample COBOL and Assembler
programs is provided in the iprfx.iqual. SOURCE data set. Each of these programs
issues function calls to the APIL.

8 COBOL program, CCIDRPT]1, produces a list of elements based on user input and
creates a CCID cross-reference report. This program is distributed as a source
module.

® Assembler program, ENHAAPGM, issues a list environment function call to list
all the environments defined in the logical map and writes the output to a file.
This program is distributed as a source module.

® Assembler program, ENHAEPGM, executes each of the element action function
calls and writes the responses to a response file. This program is distributed as a
source module.

® Assembler program, ENHAPLST, illustrates each of the list package function calls
and writes the responses to a response file. This program is distributed as a
source module.

® Assembler program, ENHAPUPD, illustrates each of the update type package
action function calls and writes the responses to a response file. This program is
distributed as a source module.

= Assembler program, ENTBJAPI, executes different inventory list function calls
based on input. With this program, you can get familiar with the various
inventory list function calls and the output that each function call generates. This
program is distributed as a load module only.

Refer to Appendix A, “Sample API Programs” on page A-1 for additional information
and the JCL required to execute these programs.

1-20 API Guide

1.13 Documentation Overview

1.13 Documentation Overview

This manual is part of a comprehensive documentation set that fully describes the
features and functions of Endevor and explains how to perform everyday tasks. For a
complete list of Endevor manuals, see the PDF Table of Contents file in the PDF
directory, or the Bookmanager Bookshelf file in the Books directory.

The following section describes product conventions.

Chapter 1. Welcome to the Application Program Interface 1-21

1.14 Name Masking

1.14 Name Masking

A name mask allows you to specify all names, or all names beginning with a
particular string, to be considered when performing an action.
Name masks are valid on:

= Element names

® System, subsystem, and type names within FROM clauses

® Report syntax

® ISPF panels

® API requests

Name masks are not valid on:
® Environment names
8 FElement names in the following situations:
— When entering a LEVel in a statement
— When using the MEMber clause with a particular action

— When building a package
1.14.1 Usage

There are three ways to mask names: by using the wildcard character (*), by using the
placeholder character (%), and by using both together.

The wildcard (*) can be used in one of two ways to specify external file names:

& When coded as the only character of a search string, Endevor returns all members
of the search field. For example, if you coded the statement ADD ELEMENT *,
all elements would be added.

8 When coded as the last character of a search string, Endevor returns all members
of the search field beginning with the characters in the search string preceding the
wildcard. For example, the statement ADD ELEMENT UPD* would add all
elements beginning with "UPD", such as UPDATED or UPDATE.

Note: You cannot use more than one wildcard in a string. The statement ADD
ELEMENT U*PD* would result in an error.

The placeholder (%) can also be used in one of two ways:

& When coded as the last character in a string, Endevor returns all members of the
search field, beginning with the characters in the search string preceding the
placeholder, but which have no more characters than were coded in the search
string. If you coded the statement ADD ELEMENT UPD%, only those elements

1-22 API| Guide

1.14 Name Masking

with four-character-long names beginning with "UPD" (UPD1 or UPDA, for
example) would be added.

® It is also possible to use the placeholder multiple times in a single search string.
The statement ADD ELEMENT U%PD% would return all elements with
five-character-long names that have U as the first character, and PD third and
fourth.

The wildcard and the placeholder can be used together, provided that the wildcard
appears only at the end of the search string and is used only once. An example of a
statement using both the wildcard and the placeholder is ADD ELEMENT U%D*.
This statement would add elements with names of any length that have U as the first
character and D as the third.

Chapter 1. Welcome to the Application Program Interface 1-23

1-24 API| Guide

Chapter 2. API Function Calls

Chapter 2. API Function Calls 2-1

2.1 Overview

2.1 Overview

This chapter describes the fields contained in the control, request, request extension
and response structures for each Endevor API function call. The information is
grouped by Element actions, Package actions and Inventory List actions. The
Assembler macro layouts and COBOL copybook layouts are delivered in the
iprfx.iqual. SOURCE installation library.

Before issuing an API function call, you must initialize the control, request, request
extension and response structures. You must also populate some of the data areas in
the control and request structures. For instructions on initializing structures, see 1.5,
“Initializing API Structures” on page 1-12.

2-2 API| Guide

2.2 Control Structure

2.2 Control Structure

The control structure contains the field that allows you to shutdown the API server as
well as define the response and message files. It also contains the return code, the
reason code and the selection count for the function call that you have performed.

The first call to the API server automatically starts it. The server remains open until
the SHUTDOWN field is set to Y.

The control structure also contains the information about the output files used by the
API on each function call. Each function call opens and closes a response file which
is defined in this structure. If two or more function calls use the same response file,
only the response to the last function call is maintained. Data from the prior function
call is overwritten.

Assembler: ENHAACTL

COBOL: ECHAACTL

2.2.1 AACTL Control Structure Fields

The following table contains a list of the fields contained in the control structure and
the options available to you.

Field Length Description

AACTL_MSG_DDN Character 8 Message file DD name. Endevor
messages, such as the Execution
Report and Source and Inventory
Management errors (if any), are
recorded to this data set. This is
NOT a required field, but it is
highly recommended that a file
name be provided. If one is not
specified, a default DD name of
APIMSGS is used. It is the
responsibility of the user to allocate
this data set prior to executing an
API function call.

Chapter 2. API Function Calls 2-3

2.2 Control Structure

Field

Length

Description

AACTL_LIST_DDN

Character 8

Response file DD name. Inventory
list response records, extract
element response records and
package list response records are
written to this data set. The layout
of each record corresponds to the
response structure. This is NOT a
required field. It is ignored by API
element and package update type
action processing. You need to
allocate this data set prior to
executing an API request. The file
DCB must be:
RECFM=VB,LRECL=2048
(calculate the minimum record size
by adding 4 to the size of the
response structure for the function
you are requesting. In most cases,
2048 works).

Note: If you request the list
component/where-used
function with the build SCL
option, the file DCB must
be:
RECFM=FB,LRECL=80.

AACTL_HI_MSGID

Character 8

The API updates this field with the
highest message id encountered
while processing the request.

Format: APIxxyyyz
where:

XX = return code
yyy = reason code

Z = severity letter

AACTL_SHUTDOWN

Character 1

API server Startup/Shutdown flag.
Set to N to invoke the API server.
Set to Y to shutdown the server.

AACTL_RTNCODE

Character 4

Return code from processing the
request. Updated by the API. See
Chapter 3, “API Return Codes and
Reason Codes” on page 3-1 for
more information.

2-4 API| Guide

2.2 Control Structure

Field

Length

Description

AACTL_REASON

Character 4

Reason code from processing the
request. Updated by the API. See
Chapter 3, “API Return Codes and
Reason Codes” on page 3-1 for
more information.

AACTL_#SELECTED

Character 8

The number of responses that meet
your selection criteria. If you are
attempting to perform a query and
are just interested in the total count,
this field contains that value. This
value is also displayed on the
Execution report.

For the element list function, it is
possible for the #SELECTED count
to be greater than the
#RETURNED count. This can
occur if the "from/to" extension
records exist and you request them.

Note: If you specify the CSECT
option in the List Directory
function request structure,
the returned count
(AACTL_#RETURNED)
contains the number of
members processed and the
selected count
(AACTL_#SELECTED)
contains the total number of
CSECTs found in the
returned members.

Chapter 2. API Function Calls 2-5

2.2 Control Structure

Field

Length

Description

AACTL_#RETURNED

Character 8

The number of responses written to
the response or list file. If you do
not specify a response file DDN,
the value of this field will be 1.
This indicates one response
structure was returned to the calling
program. This value is also
displayed on the Execution report.
Element action function calls do
not use this field.

Note: If you specify the CSECT
option in the List Directory
function request structure,
the returned count
(AACTL_#RETURNED)
contains the number of
members processed and the
selected count
(AACTL_#SELECTED)
contains the total number of
CSECTs found in the
returned members.

AACTL_STOPRC

Binary (2
bytes)

Maximum allowable processing
return code. This value is used
only when you specify wildcarding
on the request, for example, add
element ab*. If not specified, the
default value of 16 is used. In
cases where the location
information is fully qualified, the
field is ignored.

Note: You can set the default to
12 in the Optional Features
Table.

AACTL_ERRMSG

Character 132

First most severe message.

2-6 API| Guide

2.2 Control Structure

Field Length Description

AACTL_CMDMSG_DDN Character 8 Package execution log message
report file DD name. All execution
messages created by the package
execute action are written to this
report file. This is not a required
field. If a value is not specified, a
default DD name of CIEXMSGS is
used. It is the responsibility of the
user to allocate this data set prior to
executing an API request.

Chapter 2. API Function Calls 2-7

2.3 API Function Calls

2.3 API Function Calls

Endevor functions supported by the API can be categorized into four groups:
= Element Extract

Allows you to extract element and/or component source from the base and delta
libraries. Also, you can extract summary, changes, and history information
associated with element or component data.

1 Element Actions

Allows you to perform one of the element actions, such as ADD, GENERATE,
MOVE, or PRINT ELEMENT. These functions retrieve information from the
MCEF and base and delta libraries, and may update these files, depending on the
function.

® Package Actions

Allows you to perform package actions. This includes APPROVE, BACKOUT,
CAST, COMMIT, DEFINE, DELETE, DENY, EXECUTE, RESET or SUBMIT.

5 Inventory Query and List Functions

Allows you to request inventory lists and perform queries. This includes
elements, environments, packages, systems, subsystems, and all other inventory
information stored in the MCF. You can also request directory lists and
component/where-used lists.

2.3.1 Understanding Logical and Physical Mapping Requests

Many request structures ask you to specify whether the mapping path is logical or
physical:

8 Logical mapping refers to how the system administrator logically sets the route for
the inventory.

® Physical mapping refers to a direct physical path.

Within an environment, inventory always goes from Stage 1 to Stage 2. But, when an
administrator maps across to another environment, the administrator may choose Stage
1 or Stage 2 of that environment. If the administrator chooses Stage 1 of the second
environment, Stage 1 and Stage 2 of that environment represent the route. If the
administrator chooses Stage 2 of the second environment, Stage 1 of that environment
does not become part of the logical map, but does remain part of the physical map.

The example below illustrates the difference. Suppose you have Environment A and
Environment B, both with Stage 1 and Stage 2. Suppose further that the system
administrator maps Environment A to Stage 2 of Environment B.

In a physical mapping, the inventory route always includes Stage 1 of Environment B
even though the system administrator maps to Stage 2:

1. Environment A / Stage 1

2-8 API Guide

2.3 API Function Calls

2. Environment A / Stage 2

3. Environment B / Stage 1

4. Environment B / Stage 2
In a logical map, the inventory route bypasses Stage 1 of Environment B, and the
inventory route becomes:

1. Environment A / Stage 1

2. Environment A / Stage 2

3. Environment B / Stage 2

Chapter 2. API Function Calls 2-9

2.4 Request Extension

2.4 Request Extension

Unlike the request structures, there is only one request extension call to support all the
API functions. The API request extension defines the parameters necessary to process
long name elements or HFS file structures. If you are not processing long name
elements or HFS files, you can ignore the API request extension. If specified, it must
be the third parameter in the calling sequence to the API interface program,
ENAS$NDVR, following the function call.

Assembler: ENHAAREB
COBOL: ECHAAREB
2.4.1.1 AAREB_RQ Request Extension Structure Fields
The API request extension defines the parameters necessary to process long name
elements or HFS file structures. When using the AAREB structure, you must specify

all element and member information in the AAREB structure while the element,
member, data set and DD name fields in the request structure must remain blank.

Field Length Description
AAREB_RQ_ELM Character 255 Element name
Character 1 Alignment

AAREB_RQ_ELM_THRU Character 255 Through element name

Character 1 Alignment

AAREB_RQ_ELM_TELM Character 255 Target element name or through

HES file name
or

AAREB_RQ_HFSF_THRU

Character 1 Alignment
AAREB_RQ_PATH Character 768 HFS path name
AAREB_RQ_HFSF Character 255 HES file name
AAREB_RQ_RESERVE Character 2 ** Reserved field **

Character 2 Alignment

2-10 API Guide

2.5 Add Element Action

2.5 Add Element Action

The add element action API function call allows you to add an element to Endevor.

Assembler: ENHAEADD

COBOL: ECHAEADD

2.5.1 AEADD_RQ Request Structure Fields

Immediately following the header is the data area of the AEADD_RQ request
structure. The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

Field

Length

Description

AEADD_RQ_ELM

Character 10

Element name

AEADD_RQ_ELM_THRU

Character 10

Through element name

AEADD_RQ_DDN

Character 8

File or DD name where member(s)
reside. Either DDN or DSN must
be specified, but not both.

AEADD_RQ _DSN

Character 44

Data set name where member(s)
reside. Either DDN or DSN must
be specified, but not both.

AEADD_RQ_MBR

Character 10

From PDS member name

AEADD_RQ_ENV

Character 8

Environment name

AEADD_RQ_SYSTEM

Character 8

System name

AEADD_RQ_SUBSYS

Character 8

Subsystem name

AEADD_RQ_TYPE

Character 8

Type name

AEADD_RQ_CCID

Character 12

Change control id

AEADD_RQ_COMM

Character 40

Comment

AEADD_RQ_NEWVER

Character 2

New version (1-99)

AEADD_RQ_UPDT

Character 1

Update if present (Y/N)

AEADD_RQ_DEL

Character 1

Delete input source (Y/N)

AEADD_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AEADD_RQ_BYP_GEN

Character 1

Bypass generate processor (Y/N)

AEADD_RQ_PROGRO

Character 8

Processor group name

Chapter 2. API Function Calls 2-11

2.5 Add Element Action

Field Length Description

AEADD_RQ_RESERVE Character 3 ** Reserved field **

2-12 API Guide

2.6 Delete Element Action

2.6 Delete Element Action

The delete element action API function call deletes an element from the specified

inventory location.
Assembler: ENHAEDEL

COBOL: ECHAEDEL

2.6.1 AEDEL_RQ Request Structure Fields

Immediately following the header is the data area of the AEDEL_RQ request structure.
The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names.

Field

Length

Description

AEDEL_RQ_ELM

Character 10

Element name

AEDEL_RQ_ELM_THRU

Character 10

Through element name

AEDEL_RQ_ENV

Character 8

Environment name

AEDEL_RQ_SYSTEM

Character 8

System name

AEDEL_RQ_SUBSYS

Character 8

Subsystem name

AEDEL_RQ_TYPE

Character 8

Type name

AEDEL_RQ_STG_ID

Character 1

Stage id. Either stage id or stage
number must be specified, but not
both.

AEDEL_RQ_STG_NUM

Character 1

Stage number (1/2). Either stage id
or stage number must be specified,
but not both.

AEDEL_RQ_CCID

Character 12

Change control id

AEDEL_RQ_COMM

Character 40

Comment

AEDEL_RQ_ONLY_CMP

Character 1

Only delete components (Y/N)

AEDEL_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AEDEL_RQ_RESERVE

Character 3

** Reserved field **

Chapter 2. API Function Calls 2-13

2.6 Delete Element Action

Field

Length

Description

AEDEL_RQ_WCCID_
TYP

Character 1

Where CCID type (A/C/R). C is the
default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AEDEL_RQ_WCCID

Character 12

1st where CCID value

Character 84

2nd through 8th where CCID values

AEDEL_RQ_WPROGRO

Character 8

Ist where processor group value

Character 56

2nd through 8th processor group
values

® The first part is the prefix which contains the location, inventory classification, the

record number, and the record's data length.

® The second part contains the element or component source data record.

2-14 API Guide

2.7 Extract Element and Component Data

2.7 Extract Element and Component Data

The extract element and component data API function call extracts elements and
component data that match the criteria specified in the AEELM_RQ request structure
and places it in the response file defined in the control structure. AEELM_RS, the
response structure, contains information about the location and inventory classification
of the element, as well as the number of records returned by the function call and the
record length of the longest record.

Through the API, you can retrieve element data in both unformatted and formatted
display styles and component data in formatted display style. You can also retrieve
change and history information for both element and component data.

Assembler: ENHAEELM

COBOL: ECHAEELM

2.7.1 Element and Component Extraction Types

The extract element and component data function call provides seven types of
extractions. These are specified with the AEELM_RQ_FORMAT and the
AEELM_RQ_RTYPE fields:

8 The AEELM_RQ_RTYPE field determines whether element or component data is
extracted.

8 The AEELM_RQ_FORMAT field determines the format that the information will
appear in the response file.

The seven extraction types that result in different output record layouts are:

Extract Type Output Record Layout

Element extract Unformatted

Element extract, Browse Browse element record format
Element extract, Change Change element record format
Element extract, History History element record format
Component extract, Browse Browse component record format
Component extract, Change Change component record format
Component extract, History History component record format

Chapter 2. API Function Calls 2-15

2.7 Extract Element and Component Data

2.7.2 AEELM_RQ Request Structure Fields

Immediately following the header is the data area of the AEELM_RQ request
structure. The request structure is where you set your selection criteria. All request
selection fields are explained in the following table:

Field Length Description

AEELM_RQ_FORMAT Character 1 Format type:

Blank - No format, just extract
element to response file; use only
with RTYPE of 'E' (for element).

B - Endevor Browse format
C - Endevor Change format

H - Endevor History format

AEELM_RQ_RTYPE Character 1 Extraction record type:
E - Element

C - Component

AEELM_RQ_ENV Character 8 Environment name. This field
cannot contain a wildcard character.
AEELM_RQ_SYSTEM Character 8 System name. This field cannot
contain a wildcard character.
AEELM_RQ_SUBSYS Character 8 Subsystem name. This field cannot
contain a wildcard character.
AEELM_RQ_TYPE Character 8 Type name. This field cannot
contain a wildcard character.
AEELM_RQ_ELM Character 10 Element name. This field cannot
contain a wildcard character.
AEELM_RQ_STG_ID Character 1 Stage id. This field cannot contain
a wildcard character.
AEELM_RQ_VERSION Character 2 Version number. If not specified,
current version is assumed.
Optional.
AEELM_RQ_LEVEL Character 2 Level number. If not specified,

current level is assumed. Optional.

2-16 APl Guide

2.7 Extract Element and Component Data

2.7.3 AEELM_RS Response Structure Fields

Immediately following its header is the data area of the AEELM_RS response
structure. The information contained in the response structure is explained in the

following tables.

Field

Length

Description

AEELM_RS_SITE

Character 1

Site id

AEELM_RS_ENV

Character 8

Environment name

AEELM_RS_SYSTEM

Character 8

System name

AEELM_RS_SUBSYS

Character 8

Subsystem name

AEELM_RS_ELM

Character 10

Element name

AEELM_RS_TYPE

Character 8

Type name

AEELM_RS_STG_ID

Character 1

Stage id

AEELM_RS_RECCNT

Zoned Char 8

Number of records written to the
response file.

AEELM_RS_MAXLEN

Zoned Char 8

Maximum record length
encountered.

You can use the AEELM_RS_RECCNT and AEELM_RS_MAXLEN fields to
determine the number of records written to the output file and the maximum record
length encountered. The API server also identifies the record number and the record
length for each record it writes to the response file. For each record, it replaces:

® The AEELM_RS_RECCNT field with the AEELM_RS_REC# (or in COBOL
AEELM-RS-RECNUM) field, which identifies the record number.

8 The AEELM_RS_MAXLEN field with the AEELM_RS_RECLEN field, which
contains the record length, excluding any headers.

2.7.4 Element Extract and Component Data Record Layouts

Each element record returned in this format has two parts:

® The first part is the prefix which contains the location, inventory classification, the
record number, and the record length of the extracted element record.

8 The second part of the record contains the request element data.

Each component record returned has two parts:

® The first part is the prefix which contains the location, inventory classification,
record number, and the record length of the specified element.

B The second part of the record contains the requested component data, including
information about the component level, processor, symbol and macros.

Chapter 2. API Function Calls 2-17

2.7 Extract Element and Component Data

The following sections show the record layouts for each extraction option.
2.7.4.1 Element Extract, No Format Record Layout

The following example shows four records in hexadecimal format.

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000100000080TEST$API $MODNTRY LINKAGE=EXT,STACK=25000,MSGDD=SYSPRINT
04000B0OOCCDDFCDE44444DCEDDEEACCEC4444ECEESCDC44CEDDCD44FFFFFFFFFFFFFFFFFECEESCDC45DDCDEDE4DCDDCCC7CEEGEECCD7 FFF
FF6DECCC7EEEDDCDE444444444444444444444444
08004101553909530000054594520212500003523B179001247740010000000100000080352381790B464539803952175E573B23132E250
00B42744E28279953000000000000000000000000

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000200000080 COPY $QIODS
04000B0OCCDDFCDE44444DCEDDEEACCECA444ECEESCDC44CEDDCDAAFFFFFFFFFFFFFFFFFA44444444CDDEAA5DCDCEA44444444444444444
A4444444444444444444440404444444444444444
08004101553909530000054594520212500003523B179001247740010000000200000080000000000367800B89642000000000000000000
000

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000300000080MAIN $FUNCSTG ,
04000B0OOCCDDFCDE44444DCEDDEEACCECA444ECEESCDC44CEDDCD44FFFFFFFFFFFFFFFFFDCCDA44445CEDCEECA6444444444444444444444
A444444444044404404044044444444444444404
08004101553909530000054594520212500003523B179001247740010000000300000080419500000864532370B000000000000000000000
00

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000400000080GLOBALS 0D
04000BOOCCDDFCDEA4444DCEDDEEACCECA444ECEESCDCAACEDDCDAAFFFFFFFFFFFFFFFFFCODCCDEA444FCAA4A4444444444444444444444404
A444444444444444444444444444444444444444
08004101553909530000054594520212500003523B1790012477400100000004000000807362132000004000000000000000000000000000
00

2-18 API Guide

2.7 Extract Element and Component Data

2.7.4.2 Element Extract, Browse Record Layout

The following example shows the first 26 records found in the Browse Display format.
In this example, the records shown have been truncated for display purposes. To view
a complete record, invoke Endevor on-line and go to the Display Element menu.

Select Browse Option against any element.

EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT

NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS

BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE

TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API

ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM

10000000100000079

10000000200000079

10000000300000079%**

10000000400000079+* ELEMENT BROWSE

1000000050000007 9=

1000000060000007 9= ENVIRONMENT: INT SYSTEM: NDVRMVS SUBSYS
1000000070000007 9= ELEMENT: TEST$APL TYPE: ASMPGM STAGE: I
10000000800000079%*

10000000900000079

10000001000000079

10000001100000079

10000001200000079-=====================---= SOURCE LEVEL INFORMATION------
10000001300000079

10000001400000099VV.LL SYNC USER DATE TIME STMTS CCID CoMM
10000001500000099----- —=-= —-m-moom mmmmmom e e oo oo
1000000160000009901 .00 POCBRO1 30APR99 16:00 395 APU api
1000000170000009901.01 OLEJUOL 09JANOO 09:49 584 JOAPI api
1000000180000009901.02 OLEJUOL 09JANOO 10:39 395 JOAPI keep
1000000190000009901.03 OLEJUO1 10FEBOO 13:19 584 JOAPI add o
10000002000000099GENERATED OLEJUO1 10FEBOO 13:19 JOAPI add o
10000002100000099

10000002200000088+00 TEST$API $MODNTRY LINKAGE=EXT,STACK=25000,MSGDD=SYS
10000002300000088+00 COPY $QIODS

10000002400000088+00 MAIN $FUNCSTG ,

10000002500000088+00 GLOBALS DS 0D

10000002600000088+00 WDBLWORD DS D

2.7.4.3 Element Extract, Change Record Layout

The following example shows the first 26 records found in the Change Display format.
In this example, the records shown have been truncated for display purposes. To view
a complete record, invoke Endevor on-line and go to the Display Element menu.

Select Change Option against any element.

EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT

NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS

BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE

TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API

ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM

10000000100000079

10000000200000079

10000000300000079*

10000000400000079** ELEMENT CHANGES

1000000050000007 9

1000000060000007 9 ENVIRONMENT: INT SYSTEM: NDVRMVS SUBSYS
10000000700000079* ELEMENT: TEST$API TYPE: ASMPGM STAGE
10000000800000079*x

10000000900000079

10000001000000079

10000001100000079

10000001200000079============m=mmmmmmmm e SOURCE LEVEL INFORMATION------
10000001300000079

10000001400000099VV.LL SYNC USER DATE TIME STMTS CCID COM
10000001500000099----= === —----omo mmmmmom mmom eemen e oo
1000000160000009901 .00 POCBRO1 30APR99 16:00 395 APU api
10000001700000099601.01 OLEJUOL 09JANOO 09:49 584 JOAPI api
1000000180000009901.02 OLEJUOL 09JANOO 10:39 395 JOAPI kee
1000000190000009901.03 OLEJUO1 10FEBOO 13:19 584 JOAPI add
10000002000000099GENERATED OLEJUO1 1OFEBOO 13:19 JOAPI add
10000002100000099

10000002200000088+03 WINDEX_ALTYP EQU 7

10000002300000088+03 WINDEX_ALPGR EQU 8

10000002400000088+03 WINDEX_ALDSN EQU 9

10000002500000088+03 WINDEX_ALAGR EQU 10

10000002600000088+03 WINDEX_ALAGJ EQU 11

Chapter 2. API Function Calls 2-19

2.7 Extract Element and Component Data

2.7.4.4 Element Extract, History Record Layout

The following example shows the first 38 records found in the History Display format.
In this example, the records shown have been truncated for display purposes. To view
a complete record, invoke Endevor on-line and go to the Display Element menu.
Select the History Option against any element.

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000100000079
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000200000079
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000300000079**

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000400000079+* ELEMENT BROWSE

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000500000079**

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000600000079** ENVIRONMENT: INT SYSTEM:NDVRMVS SUBSYS
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000700000079** ELEMENT: TEST$API TYPE: ASMPGM STAGE I
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000800000079**

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000000900000079
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000001000000079
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000001100000079

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000001200000079---============-=--=---—-- SOURCE LEVEL INFORMATION------
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000001300000079

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000001400000099VV.LL SYNC USER DATE TIME STMTS CCID COMM
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000001500000099----= ==== ====m=o= —mmmmmm mmom cmmmm ommmmeemon oo
EELROINT NDVRMVS BASE TEST$API ASMPGM 1000000160000009901.00 POCBRO1 30APR99 16:00 395 APU api
EELROINT NDVRMVS BASE TEST$API ASMPGM 1000000170000009901.01 OLEJUOL ©9JANOO 09:49 584 JOAPI api
EELROINT NDVRMVS BASE TEST$API ASMPGM 1000000180000009901.02 OLEJUOL ©9JANOO 10:39 395 JOAPI keep
EELROINT NDVRMVS BASE TEST$API ASMPGM 1000000190000009901.03 OLEJUO1 10FEBOO 13:19 584 JOAPI add o
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002000000099GENERATED OLEJUO1 10FEBOO 13:19 JOAPT add o

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002100000099

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002200000088+00 TEST$API $MODNTRY LINKAGE=EXT,STACK=25000,MSGDD=SYS
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002300000088+00 COPY $QIODS

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002400000088+00 MAIN $FUNCSTG

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002500000088+00 GLOBALS DS 0D

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002600000088+00 WDBLWORD DS D

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002700000088+00 MAINRSLT DS CL8

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002800000088+00 MAIN@GQIO DS A ADDRESS OF
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000002900000088+00 MAINMISS DS F MISMATCH C

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003000000088+00 WINDEX DS F LAST FUNCT
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003100000088+00 WINDEX_ALENV EQU e

EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003200000088+00 WINDEX_ALSTG EQU
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003300000088+00 WINDEX_ALSYS EQU
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003400000088+00 WINDEX_ALSBS EQU
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003500000088+00 WINDEX_ALSIT EQU
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003600000088+00 WINDEX_ALELM EQU
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003700000088%+03 ~ WINDEX_ALTYP EQU
EELROINT NDVRMVS BASE TEST$API ASMPGM 10000003800000088%+03 ~ WINDEX_ALPGR EQU

NG~ WN

2-20 API Guide

2.7 Extract Element and Component Data

2.7.4.5 Component Extract, Browse Record Layout

The following example shows the first 42 records found in the Browse Display format.
In this example, the records shown have been truncated for display purposes. To view
a complete record, invoke Endevor on-line and go to the Display Element menu.
Select the Browse Component Option against any element.

EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT

NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS

BASE TEST$SAPI ASMPGM 10000000100000079
BASE TEST$SAPI ASMPGM 10000000200000079

BASE TESTSAPI ASMPGM 10000000300000079**

BASE TEST$API ASMPGM 10000000400000079+* COMPONENT BROWSE

BASE TEST$API ASMPGM 10000000500000079**

BASE TEST$API ASMPGM 10000000600000079** ENVIRONMENT: INT SYSTEM:NDVRMVS SUBSYS
BASE TEST$API ASMPGM 10000000700000079** ELEMENT: TEST$API TYPE: ASMPGM STAGE
BASE TEST$API ASMPGM 10000000800000079+**

BASE TEST$API ASMPGM 10000000900000079

BASE TEST$SAPI ASMPGM 10000001000000079

BASE TEST$SAPI ASMPGM 10000001100000079

BASE TEST$API ASMPGM 10000001200000079--=-===-=========-=----- COMPONENT LEVEL INFORMATION-------
BASE TEST$SAPI ASMPGM 10000001300000079

BASE TEST$API ASMPGM 10000001400000099VV.LL SYNC USER DATE TIME STMTS CCID COMM
BASE TEST$API ASMPGM 10000001500000099----= ==== ======== —mmmmmm mmmom ommmm mmmmmeon oo
BASE TEST$API ASMPGM 1000000160000009901.00 POCBRO1 30APR99 16:00 71 APU api
BASE TEST$API ASMPGM 1000000170000009901.01 OLEJUOL 09JANOO 09:49 66 JOAPI api
BASE TEST$API ASMPGM 1000000180000009901.02 OLEJUOL1 ©9JANOO 10:39 72 JOAPI keep
BASE TEST$API ASMPGM 1000000190000009901.03 OLEJUOL 09JANOO 10:41 72 JOAPI keep
BASE TEST$API ASMPGM 1000000200000009901.04 OLEJUO1 21JANOO 12:38 74 JOAPI api
BASE TEST$API ASMPGM 1000000210000009901.05 OLEJUO1 10FEBOO 13:19 80 JOAPIL add
BASE TEST$API ASMPGM 10000002200000099

BASE TEST$SAPI ASMPGM 10000002300000000

BASE TEST$SAPI ASMPGM 10000002400000000

BASE TEST$API ASMPGM 10000002500000079--==================-=-—-- ELEMENT INFORMATION ---------
BASE TEST$SAPI ASMPGM 10000002600000000

BASE TEST$API ASMPGM 10000002700000101 VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TY

BASE TEST$API ASMPGM 10000002800000100%+05 01.03 10FEBOO 13:19 NDVRMVS BASE TEST$API AS
BASE TEST$API ASMPGM 10000002900000000

BASE TEST$API ASMPGM 10000003000000000

BASE TEST$API ASMPGM 10000003100000079--=-=============mucuuuum PROCESSOR INFORMATION ---------
BASE TEST$API ASMPGM 10000003200000000

BASE TEST$API ASMPGM 10000003300000101 VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TY

BASE TEST$API ASMPGM 10000003400000100+04 01.09 05JUL97 17:34 LGNTLCL PROCESS GASM PR

BASE TEST$API ASMPGM 10000003500000000

BASE TEST$API ASMPGM 10000003600000000

BASE TEST$API ASMPGM 10000003700000078--=============-=-==—=-—-- SYMBOL INFORMATION ----------
BASE TEST$API ASMPGM 10000003800000000

BASE TEST$API ASMPGM 10000003900000135 DEFINED SYMBOL VALUE

BASE TEST$API ASMPGM 10000004000000135+063 PROCESSOR AUTH 0

BASE TEST$API ASMPGM 10000004100000135+00 PROCESSOR LET NOLET

BASE TEST$API ASMPGM 10000004200000135+00 PROCESSOR LINK YES

Chapter 2. API Function Calls 2-21

2.7 Extract Element and Component Data

2.7.4.6 Component Extract, Change Record Layout

The following example shows the first 41 records found in the Change Display format.
In this example, the records shown have been truncated for display purposes. To view
a complete record, invoke Endevor on-line and go to the Display Element menu.
Select the Change Component Option against any element.

EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT

NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS

BASE TEST$API ASMPGM 10000000100000079
BASE TEST$API ASMPGM 10000000200000079

BASE TEST$API ASMPGM 10000000300000079**

BASE TEST$API ASMPGM 10000000400000079** COMPONENT CHANGES

BASE TEST$API ASMPGM 10000000500000079**

BASE TEST$API ASMPGM 10000000600000079** ENVIRONMENT: INT SYSTEM:NDVRMVS SUBSYS
BASE TEST$API ASMPGM 10000000700000079** ELEMENT: TEST$API TYPE: ASMPGM STAGE

BASE TEST$API ASMPGM 10000000800000079**

BASE TEST$API ASMPGM 10000000900000079

BASE TEST$API ASMPGM 10000001000000079

BASE TEST$API ASMPGM 10000001100000079

BASE TEST$API ASMPGM 10000001200000079---============-=----- COMPONENT LEVEL INFORMATION-------
BASE TEST$API ASMPGM 10000001300000079

BASE TEST$API ASMPGM 10000001400000099VV.LL SYNC USER DATE TIME STMTS CCID COMM
BASE TEST$API ASMPGM 10000001500000099----= ==== ====m=m= —mmmomm mmom dmmmm ommmmeemon oo
BASE TEST$API ASMPGM 1000000160000009901.00 POCBRO1 30APR99 16:00 71 APU api
BASE TEST$API ASMPGM 1000000170000009901.01 OLEJUO1 ©9JANOO 09:49 66 JOAPI api
BASE TEST$API ASMPGM 1000000180000009901.02 OLEJUO1 ©9JANOO 10:39 72 JOAPI keep
BASE TEST$API ASMPGM 1000000190000009901.03 OLEJUOL 09JANOO 10:41 72 JOAPI keep
BASE TEST$API ASMPGM 1000000200000009901.04 OLEJUO1 21JANOO 12:38 74 JOAPI api
BASE TEST$API ASMPGM 1000000210000009901.05 OLEJUO1 10FEBOO 13:19 80 JOAPI add

BASE TEST$API ASMPGM 10000002200000099
BASE TEST$API ASMPGM 10000002300000000
BASE TEST$API ASMPGM 10000002400000000
BASE TEST$API ASMPGM 10000002500000079--================-=—=-—-- ELEMENT INFORMATION ----------
BASE TEST$API ASMPGM 10000002600000000

BASE TEST$API ASMPGM 10000002700000101 VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TY

BASE TEST$API ASMPGM 10000002800000100+05 01.03 10FEBOO 13:19 NDVRMVS BASE TEST$API AS
BASE TEST$API ASMPGM 10000002900000100+03-05 01.02 09JANOO 10:39 NDVRMVS BASE TEST$API ~ AS
BASE TEST$API ASMPGM 10000003000000000

BASE TEST$API ASMPGM 10000003100000000

BASE TEST$API ASMPGM 10000003200000079--=============-=-~=-ocoov INPUT COMPONENTS —----------
BASE TEST$API ASMPGM 10000003300000000

BASE TEST$API ASMPGM 10000003400000000

BASE TEST$API ASMPGM 10000003500000086STEP: ASSEM DD=SYSLIB ~ VOL=NDVRO1 DSN=BST.INTMVSS1.MAC
BASE TEST$API ASMPGM 10000003600000000

BASE TEST$API ASMPGM 10000003700000096 MEMBER VV.LL DATE TIME SYSTEM SUBSYS E
BASE TEST$API ASMPGM 10000003800000095+05 ENHAEELM ©01.00 10JANOGO 14:17 NDVRMVS BASE
BASE TEST$API ASMPGM 10000003900000095+05 ENHALAGJ 01.00 10JANOGO 14:18 NDVRMVS BASE
BASE TEST$API ASMPGM 10000004000000095+05 ENHALAGR ~ 01.00 10JANOGO 14:18 NDVRMVS BASE
BASE TEST$API ASMPGM 10000004100000095+05 ENHALDSN ~ 01.00 10JANOGO 14:18 NDVRMVS BASE

mmmm

2-22 API Guide

2.7 Extract Element and Component Data

2.7.4.7 Component Extract, History Record Layout

The History display lists all of the components and events related to an element. The
following example shows the first 41 records found in the History display format. In
this example, the records shown have been truncated for display purposes. To view a
complete record, invoke Endevor on-line and go to the Display Element menu. Select
the History Component Option against any element.

EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT
EELROINT

NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS
NDVRMVS

BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE
BASE

TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API
TEST$API

ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM
ASMPGM

10000000100000079

10000000200000079
10000000300000079**
1000000040000007 9+~
1000000050000007 9+~
1000000060000007 9+
10000000700000079**
1000000080000007 9
10000000900000079

COMPONENT HISTORY

ENVIRONMENT:
ELEMENT:

INT
TEST$API

SYSTEM:NDVRMVS
TYPE: ASMPGM

SUBSYS
STAGE

16000001600000079

10000001100000079

10000001200000079---

10000001300000079

10000001400000099VV.
10000001500000099---
1000000160000009901.
.01 OLEJUO1
.02 OLEJUO1
.03 OLEJUO1
.04 OLEJUO1
.05 OLEJUO1

1000000170000009901
1000000180000009901
10000001900000099601
1000000200000009901
10000002100000099601
10000002200000099
16000002300000000
10000002400000000

10000002500000079---

10000002600000000

10000002700000101 VV.LL DATE

10000002800000100%+05 01.03 10FEBOO 13:19 NDVRMVS BASE TEST$API AS
10000002900000100%+03-05 01.02 09JANOO 10:39 NDVRMVS BASE TEST$SAPI AS
10000003000000100%+02-03 01.02 09JANOO 10:39 NDVRMVS BASE TEST$SAPI AS
10000003100000100%+01-02 01.01 ©9JANOO ©9:49 NDVRMVS BASE TEST$API ~ AS
10000003200000100%+00-01 01.00 30APR99 16:00 NDVRMVS BASE TEST$API ~ AS
10000003300000000

10000003400000000

10000003500000079-================-mmmuu PROCESSOR INFORMATION -----------
10000003600000000

10000003700000101 VV.LL DATE TIME SYSTEM SUBSYS ELEMENT TY
10000003800000100%+04 01.09 05JUL97 17:34 LGNTLCL PROCESS GASMPR
10000003900000100%+03-04 01.03 16AUG98 11:26 LGNTLCL PROCESS GASMPR
10000004000000100%+00-03 01.09 05JUL97 17:34 LGNTLCL PROCESS GASMPR

10000004100000000

COMPONENT LEVEL
DATE TIME STMTS

00 POCBRO1 30APR99 16:00 71 APU

09JANOO 09:49 66 JOAPI
09JANOO 10:39 72
09JANOO 10:41 72
21JANOO 12:38 74 JOAPI
10FEBOO 13:19 80 JOAPI

ELEMENT INFORMATION

TIME SYSTEM SUBSYS ELEMENT TY

Chapter 2. API Function Calls 2-23

2.8 Generate Element Action

2.8 Generate Element Action

2.8.1 AEGEN_RQ Request Structure Fields

The generate element action API function call executes the generate processor for the

current level of an element.

Assembler: ENHAEGEN

COBOL: ECHAEGEN

Immediately following the header is the data area of the AEGEN_RQ request
structure. The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names.

Field

Length

Description

AEGEN_RQ_ELM

Character 10

Element name

AEGEN_RQ_ELM_THRU

Character 10

Through element name

AEGEN_RQ_ENV

Character 8

Environment name

AEGEN_RQ_SYSTEM

Character 8

System name

AEGEN_RQ_SUBSYS

Character 8

Subsystem name

AEGEN_RQ_TYPE

Character 8

Type name

AEGEN_RQ_STG_ID

Character 1

Stage id. Either stage id or stage
number must be specified, but not
both.

AEGEN_RQ_STG_NUM

Character 1

Stage number (1/2). Either stage id
or stage number must be specified,
but not both.

AEGEN_RQ_CCID

Character 12

Change control id

AEGEN_RQ_COMM

Character 40

Comment

AEGEN_RQ_COPYBACK

Character 1

Copy back element (Y/N)

AEGEN_RQ_SEARCH

Character 1

Search map (Y/N). Y is the default

AEGEN_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AEGEN_RQ_PROGRO

Character 8

Processor group name

2-24 API| Guide

2.8 Generate Element Action

Field

Length

Description

AEGEN_RQ_RESERVE

Character 3

** Reserved field **

AEGEN_RQ_WCCID_
TYP

Character 1

Where CCID type (A/C/R). Cis
the default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AEGEN_RQ_WCCID

Character 12

1st where CCID value

Character 84

2nd through 8th where CCID
values

AEGEN_RQ_WPROGRO

Character 8

st where processor group value

Character 56

2nd through 8th processor group
values

Chapter 2. API Function Calls 2-25

2.9 List Element

2.9 List Element

The list element API function call allows you to produce a list of elements.

Depending on the response file DDN (AACTL_LIST_DDN) field value, the first of
the last response structure is placed in your defined response area, ALELM_RS. Refer
to 2.2, “Control Structure” on page 2-3 for details. This allows you to check the
response quickly if you are looking for a specific element. The API also writes all
responses generated by your request to an external data set if you specified a file
output DD name in the control structure.

Assembler: ENHALELM

COBOL: ECHALELM

2.9.1 ALELM_RQ Request Structure Fields

Immediately following the header is the data area of the ALELM_RQ request
structure. The request structure is where you set your selection criteria. All request
selection fields are explained in the following table.

Field Length Description
ALELM_RQ_ENV Character 8 Environment name. This field
cannot contain a wildcard
character.
ALELM_RQ_SYSTEM Character 8 System name. This field can
contain a wildcard character.
ALELM_RQ_SUBSYS Character 8 Subsystem name. This field
can contain a wildcard
character.
ALELM_RQ_TYPE Character 8 Type name. This field can

contain a wildcard character.

ALELM_RQ_ELM Character 10 Element name. This field can
contain a wildcard character.

ALELM_RQ_STG_ID Character 1 Stage id as defined in the
C1DEFLTS table. You can
code either stage id or stage
number but not both. This field
can contain a wildcard
character.

ALELM_RQ_STG_NUM Character 1 Stage number (1/2). You can
code either stage id or stage
number but not both.

2-26 APl Guide

2.9 List Element

Field Length

Description

ALELM_RQ_TOENV Character 8

Ending Environment name.
Used in conjunction with
"B"etween or "R"ange
SEARCH options. A wildcard
character is not allowed.

ALELM_RQ_TOSTG_ID Character 1

Ending Stage id. Used in
conjunction with the "B"etween
or "R"ange SEARCH options.
A wildcard character is not
allowed.

ALELM_RQ_TOELM Character 10

To Element name. If specified,
this field can contain a
wildcard. Optional.

ALELM_RQ_ELM_THRU Character 10

Through Element name.

Searching: If you specify 'B', or 'R' for the ALELM_RQ_SEARCH search
argument, you must specify the To Environment in the ALELM_RQ_TOENYV field
and the To Stage Id in the ALELM_RQ_TOSTG_ID field. You cannot use a
wildcard. In addition, these fields will also be ignored unless you use them with the

'B' or 'R' search fields.

If you specify the ALELM_RQ_TOELM field, To Element Name, the element name
must be greater than the ALELM_RQ_ELM field value, Element Name.

2.9.1.1 Information About Action Options

Field Length Description
ALELM_RQ_PATH Character 1 Mapping path:

L - for Logical

P - for Physical
ALELM_RQ_RETURN Character 1 F - for return only the first

record that satisfies the request.

A - for return all records that
satisfy the request.

Chapter 2. API Function Calls 2-27

2.9 List Element

Field

Length

Description

ALELM_RQ_SEARCH

Character 1

Mapping argument:

A - for Search All the way up
the map.

B - for Search Between the two
specified environments and
stages.

N - for No Search.

E - for Search next specified
environment/stage then up the
map.

R - for Search the Range,
between and including the
specified environments and
stages.

ALELM_RQ_BDATA

Character 1

Only return the base element
data.

Y - Only return the base data.
If this option is enabled, use the
ALELB_RS structure defined in
ENHALELM to map the
response data fields.

N - Return all element master
data.

ALELM_RQ_FDSN

Character 1

Return the 'from’
dataset-member/path-file data as
a response record
(ALELM_RS_RECTYP=F).

Y - Return this data.
N - Do not return this data.

If you enable this option, use
the ALELX_ RS structure
defined in ENHALELM to map
the response data fields.

2-28 API Guide

2.9 List Element

Field Length Description

ALELM_RQ_TDSN Character 1 Return the 'target'
dataset-member/path-file data as
a response record
(ALELM_RS_RECTYP=T).

Y - Return this data.
N - Do not return this data.

If you enable this option, use
the ALELX_RS structure
defined in ENHALELM to map
the response data fields.

2.9.1.2 Information About Selection Criteria

Field Length Description

ALELM_RQ_WLPROC_FAIL Character 1 Selection criteria. Where last
processor failed (Y/N).

ALELM_RQ_WLPROC_TYP Character 1 Selection criteria. Where last
processor type is:

D - Delete Processor
G - Generate Processor

M - Move Processor

ALELM_RQ_WGEN_FDATE Character 7 Selection criteria. Where
generate from date. Format is
DDMMMYY (31JANO1).

To select based on an exact
date and time, code the from
and through date and time with
the identical values.

If you specify the from
information and not the through
information, the API selects all
records starting at the from
date/time and later.

ALELM_RQ_WGEN_FTIME Character 5 Selection criteria. Where
generate from time. Format is
HH:MM (23:59).

Chapter 2. API Function Calls 2-29

2.9 List Element

Field

Length

Description

ALELM_RQ_WGEN_TDATE

Character 7

Selection criteria. Where
generate through date. Format
is DDMMMYY (31JANO1).

To select based on an exact
date and time, code the from
and through date and time with
the identical values.

If you specify the through
information and not the from
information, the API selects all
records starting at the through
date/time and earlier.

ALELM_RQ_WGEN_TTIME

Character 5

Selection criteria. Where
generate through time. Format
is HH:MM (24:59).

ALELM_RQ_WCCID_TYP

Character 1

Where CCID type (A/C/G/L/R).
A - Last action

G - Generate

L - Last level

R - Retrieve

C - Current CCID. Compares
the WCCID value(s) against the
last action, generate and last
level CCID valued. If any
match is found, the record is
selected.

If this field is specified, at least
one WCCID value must be
specified. If this field is not
specified, the WCCID field(s)
are ignored.

ALELM_RQ_WCCID

Character 12

Ist where change control id
value

ALELM_RQ_WCCID2_8

Character 84

2nd through 8th where ccid
values

ALELM_RQ_WPROGRO

Character 8

Ist where processor group value

ALELM_RQ_WPROGRO2_8

Character 56

2nd through 8th where
processor group values

Character 4

** Reserved field **

2-30 API Guide

2.9 List Element

Note: The ALELM_RQ_FLAG field is now ALELM_RQ_BDATA and
ALELM_RQ_TO_ELM is now ALELM_RQ_ELM_THRU. You should use
the new names in new applications. The API, however, still supports the old
field names. A value of 'B' or 'Y' activates the 'base fields only' feature.

2.9.2 List Element Response Structures

There are three types of list element response structures:

& Master or full contains all the fields located in the master control file record
about an element. Depending on the value you specify in the
ALELM_RQ_BDATA field in the request structure, you will receive all the
element fields or just the Base fields.

= Base contains what are considered to be the more important MCF record fields. It
is a subset of the master response structure.

® From and target extension records contain the path and file names when
processing long name elements.

Extension records only exist when the from/target path name exceeds 44
characters and/or the from/target HFS file name is greater than 10 characters.
When written, the RECTYP value is 'F' or 'T' and they follow the master or base
response record.

Regarding your request type for the the response structure, always specify the base
response structure, ALELM_RS, as the last parameter in the call to the API
(ENASNDVR).

2.9.3 ALELM_RS Response Structure Fields

Immediately following its header is the data area of the ALELM_RS response
structure. The information contained in the response structure is explained in the
following tables.

Chapter 2. API Function Calls 2-31

2.9 List Element

Field

Length

Description

ALELM_RS_RECTYP

Character 1

There are four types of response
record.

M - Master record
B - Base data only

F - From
dataset-member/path-file data

T - Target
dataset-member/path-file data

The values specified on the
BDATA, FDSN and TDSN
fields in the ALELM_RQ block
determine the types of records
returned.

ALELM_RS_SITE

Character 1

Site id

ALELM_RS_ENV

Character 8

Environment name

ALELM_RS_SYSTEM

Character 8

System name

ALELM_RS_SUBSYS

Character 8

Subsystem name

ALELM_RS_ELEMENT

Character 10

Element name

ALELM_RS_TYPE Character 8 Type name
ALELM_RS_STG_NAME Character 8 Stage name
ALELM_RS_STG_ID Character 1 Stage id

ALELM_RS_STG_NUM

Character 1

Stage number (1/2)

ALELM_RS_STG_REL

Zoned Char 4

Relative mapped stage number

ALELM_RS_PROCGRP

Character 8

Processor group name

ALELM_RS_UPD_DATE

Zoned Char 8

Record update date
YYYYMMDD

ALELM_RS_UPD_TIME

Zoned Char 8

Record update time
HHMMSSTH

ALELM_RS_SIGNOUT

Character 8

Signout user id

ALELM_RS_ELM_VV

Zoned Char 2

Current element version number

ALELM_RS_ELM_LL

Zoned Char 2

Current element level number

ALELM_RS_CMP_VV

Character 2

Current component version
number

ALELM_RS_CMP_LL

Character 2

Current component level
number

2-32 API Guide

2.9 List Element

Information About the Last Action

Field

Length

Description

ALELM_RS_LMOD_NAME

Character 8

Last element - modifying
action

ALELM_RS_LACT_NAME

Character 8

Last action

ALELM_RS_LACT_RC

Character 5

Endevor return code

2.9.3.2 Information About the Element Base

ALFELM_RS_LACT_DATE Zoned Char 8 Date YYYYMMDD
ALELM_RS_LACT_TIME Zoned Char 8 Time HHMMSSTH
ALELM_RS_LACT USER Character 8 User id
ALELM_RS_LACT_CCID Character 12 CCID
ALELM_RS LACT COMMENT Character 40 Comment

Field Length Description

ALELM_RS_EBAS_NAME

Character 10

Element base member name

ALELM_RS_EBAS_DATE

Zoned Char 8

Element base date

YYYYMMDD
ALELM_RS _EBAS_TIME Zoned Char 8 Element base time
HHMMSSTH
ALELM_RS_EBAS_TOTL Zoned Char 5 Number of statements in base
ALELM_RS_EBAS_LVL Zoned Char 2 Base level number
ALELM_RS_EBAS_FLG1 Character 1 Y - if Element base is
compressed
ALELM_RS_EBAS_USER Character 8 User id associated with base

ALELM_RS_EBAS_
COMMENT

Character 40

Comment associated with base

2.9.3.3 Information About the Element Delta (Last Level)

Field

Length

Description

ALELM_RS_EDLT_NAME

Character 8

Element delta member name

ALELM_RS_EDLT_DATE

Zoned Char 8

Element last level date
YYYYMMDD

Chapter 2. API Function Calls 2-33

2.9 List Element

Field

Length

Description

ALELM_RS_EDLT_TIME

Zoned Char 8

Element last level time
HHMMSSTH

ALELM_RS_EDLT_TOTL

Zoned Char 5

Number of statements in last
level

ALELM_RS_EDLT_USER

Character 8

User id associated with last
level

ALELM_RS_EDLT_CCID

Character 12

CCID associated with last
level

ALELM_RS_EDLT_
COMMENT

Character 40

Comment associated with last
level

ALELM_RS_EDLT_INS

Zoned Char 5

Number of inserts in last level

ALELM_RS_EDLT_DEL

Zoned Char 5

Number of deletes in last level

ALELM_RS_EDLT_FMT

Character 1

F - Forward delta format

R - Reverse delta format

2.9.3.4 Information About the Component List Base

Field

Length

Description

ALELM_RS_XBAS_NAME

Character 8

Component base member
name

ALELM_RS_XBAS_DATE

Zoned Char 8

Component base date
YYYYMMDD

ALELM_RS_XBAS_TIME

Zoned Char 8

Component base time
HHMMSSTH

ALELM_RS_XBAS_TOTL

Zoned Char 8

Number of statements in base

ALELM_RS_XBAS_LVL

Zoned Char 2

Base level number

2.9.3.5 Information About the Component List Delta

Field

Length

Description

ALELM_RS_XDLT_NAME

Character 8

Component delta member name

ALELM_RS_XDLT_DATE

Zoned Char 8

Component last level date
YYYYMMDD

ALELM_RS_XDLT_TIME

Zoned Char 8

Component last level time
HHMMSSTH

2-34 API Guide

2.9 List Element

Field

Length

Description

ALELM_RS_XDLT _TOTL

Zoned Char 8

Number of statements in last
level

ALELM_RS_XDLT_INS

Zoned Char 8

Number of inserts in last level

ALELM_RS_XDLT_DEL

Zoned Char 8

Number of deletes in last level

ALELM_RS _XDLT FMT Character 1 F - Forward delta format
R - Reverse delta format
ALELM_RS_XDLT_MON Character 1 M - Component list built by

monitor

ALELM_RS_XDLT_CPY

Character 1

C - Component list copied or
restored

ALELM_RS_XDLT_DLTA

Character 1

D - Component list base stored
in the delta library

2.9.3.6 Information About the Last Element Move

Field

Length

Description

ALELM_RS_MOV_DATE

Zoned Char 8

Element Move date
YYYYMMDD

ALELM_RS_MOV_TIME

Zoned Char 8

Element Move time
HHMMSSTH

ALELM_RS_MOV_USER

Character 8

User id associated with the
move

2.9.3.7 Information About the Last Add or Update Data Set

Field

Length

Description

ALELM_RS_FR_DSN

Character 44

Add/Update from data set name

ALELM_RS_FR_MBR

Character 10

Add/Update from member name

2.9.3.8 Information About the Element Processor Execution

Chapter 2. API Function Calls 2-35

2.9 List Element

Field

Length

Description

ALELM_RS_PROC_FLG1

Character 1

0 - No processor executed

1 - Last processor was Generate
2 - Last processor was Move

3 - Last processor was Delete

4 - Last processor was unknown

ALELM_RS_PROC_FLG2

Character 1

F - Last processor failed

ALELM_RS_PROC_DATE

Zoned Char 8

Element last processor date
YYYYMMDD

ALELM_RS_PROC_TIME

Zoned Char 8

Element last processor time
HHMMSSTH

ALELM_RS_GEN_DATE

Zoned Char 8

Element last generate date
YYYYMMDD

ALELM_RS_GEN_TIME

Zoned Char 8

Element last generate time
HHMMSSTH

ALELM_RS_GEN_USER

Character 8

User id associated with last
generate

ALELM_RS_GEN_CCID

Character 12

CCID associated with last
generate

ALELM_RS_GEN_
COMMENT

Character 40

Comment associated with last
generate

ALELM_RS_PROC_FLG

Character 8

"*FAILED*' - if last processed
failed execution

ALELM_RS_LASTPROC

Character 8

Name of the last processor
executed

ALELM_RS_PROC_RC

Character 5

Processor return code

2.9.3.9 Information About the Last Element Retrieve

Field

Length

Description

ALELM_RS_RET_DATE

Zoned Char 8

Last Retrieve date
YYYYMMDD

ALELM_RS_RET_TIME

Zoned Char 8

Last Retrieve time
HHMMSSTH

ALELM_RS_RET_USER

Character 8

User id associated with last
retrieve

2-36 APl Guide

2.9 List Element

Field

Length

Description

ALELM_RS_RET_CCID

Character 12

CCID associated with last
retrieve

ALELM_RS_RET_COMM

Character 40

Comment associated with last

retrieve

ALELM_RS_RET_DSN

Character 44

Retrieve-To data set name

ALELM_RS_RET_MBR

Character 10

Retrieve-To member name

2.9.3.10 Information About the Package Last Executed Against the Element

Field

Length

Description

ALELM_RS_SPKG_DATE

Zoned Char 8

Date YYYYMMDD

ALELM_RS_SPKG_TIME

Zoned Char 8

Time HHMMSSTH

ALELM_RS_SPKG_ID

Character 16

Package id

2.9.3.11 Information About the Package Last Executed Against the Element

Field

Length

Description

ALELM_RS_OPKG_DATE

Zoned Char 8

Date YYYYMMDD

ALELM_RS_OPKG_TIME

Zoned Char 8

Time HHMMSSTH

ALELM_RS_OPKG_ID

Character 16

Package id

2.9.3.12 Information About the Last "FROM" Endevor Location

Field

Length

Description

ALELM_RS_FROM_SITE

Character 1

Site id

ALELM_RS_FROM_ENV

Character 8

Environment name

ALELM_RS_FROM_SYS

Character 8

System name

ALELM_RS_FROM_SBS

Character 8

Subsystem name

ALELM_RS_FROM_ELM

Character 10

Element name

ALELM_RS_FROM_TYPE

Character 8

Type name

ALELM_RS_FROM_STG#

Character 1

Stage number

ALELM_RS_FROM_FACT

Character 8

Action that updated "From"
location

Chapter 2. API Function Calls 2-37

2.9 List Element

Field Length Description
ALELM_RS_FROM_VV Character 2 Version number
ALELM_RS_FROM_LL Character 2 Level number

2.9.3.13 Other Fields

Field Length Description

ALELM_RS_FMID Zoned Char 5 Record created release id

2.9.3.14 Information About the Package for which the Element is Locked

Field Length Description
ALELM_LPKG_DATE Zoned Char 8 DATE YYYYMMDD
ALELM_LPKG_TIME Zoned Char 8 TIME HHMMSSTH
ALELM_LPKG_ID Character 16 Package id
Character 1 ** Reserved field **
ALELM_RS_ELMNAMEL Binary (2 Length of element name. Possible
bytes) values are 1-255.

ALELM_RS_ELMNAME Character 255 Full element name. If the element
name exceeds 10 characters in
length, this field contains the full
element name and
ALELM_RS_ELM contains a
generated short name. If the name
is not less than 10 characters,
ELMNAME and ELM are equal.

Character 1 ** Reserved field **

2.9.3.15 ALELB_RS Response Structure Fields

There are three types of list element response structures:

8 Master or full contains all the fields located in the master control file record
about an element. Depending on the value you specify in the
ALELM_RQ_BDATA field in the request structure, you will receive all the
element fields or just the Base fields.

= Base contains what are considered to be the more important MCF record fields. It
is a subset of the master response structure.

® From and target extension records contain the path and file names when
processing long name elements.

2-38 API Guide

2.9 List Element

Extension records only exist when the from/target path name exceeds 44
characters and/or the from/target HFS file name is greater than 10 characters.
When written, the RECTYP value is 'F' or 'T' and they follow the master or base

response record.

"Y' - Only returns the base data. If this option is enabled, use the ALELB_RS
structure defined in ENHALELM to map the response data fields.

'N' - Returns all element master data.

Field

Length

Description

ALELB_RS_RECTYP

Character 1

Record type:

'B' base data

'M' master record

'F' long name from extension record

"T' long name to extension record

ALELB_RS_SITE

Character 1

Site id

ALELB_RS_ENV

Character 8

Environment name

ALELB_RS_SYSTEM

Character 8

System name

ALELB_RS_SUBSYS

Character 8

Subsystem name

ALELB_RS_ELEMENT

Character 10

Element name

ALELB_RS_TYPE Character 8 Type name
ALELB_RS_STG_NAME Character 8 Stage name
ALELB_RS_STG_ID Character 1 Stage id

ALELB_RS_STG_NUM

Character 1

Stage number

ALELB_RS_STG_REL

Zoned Char 4

Relative stage number

ALELB_RS_PROCGRP

Character 8

Processor group

ALELB_RS_UPD_DATE

Zoned Char 8

Record update date 'YYYYMMDD'

ALELB_RS_UPD_TIME

Zoned Char 8

Record update time 'HHMMSSTH'

ALELB_RS_SIGNOUT

Character 8

Signout userid

ALELB_RS_ELM_VV

Zoned Char 2

Current element version number

ALELB_RS_ELM_LL

Zoned Char 2

Current element level number

ALELB_RS_CMP_VV

Character 2

Current component version number

ALELB_RS_CMP_LL

Character 2

Current component level number

ALELB_RS_EDLT_DATE

Zoned Char 8

Element last level date
YYYYMMDD'

Chapter 2. API Function Calls 2-39

2.9 List Element

Field Length Description

ALELB_RS_EDLE TIME Zoned Char 8 Element last level time
'HHMMSSTH'

ALELB_RS_ELMNAME Character 255 Actual element name

'L' for length of element name

Character 1 Alignment

If you enable this option, use the ALELX_RS structure defined in ENHALELM to
map the response data fields.

2.9.3.16 ALELX_RS Response Structure Fields

Field Length Description
ALELX_RS_RECTYP Character 1 Record type:
'B' base data

'M' master record
'F' long name from extension record

"T' long name to extension record

ALELX_RS_EXTDATA Character 1027 Extension record data:

= FROM/TO DSN/PATH name
length. Field length is 2 bytes
(halfword).

8 FROM/TO DSN/PATH name.
Field length is 45-768 bytes
(variable).

= FROM/TO MBR/FILE name
length. Field length is 2 bytes
(halfword).

= FROM/TO MBR/FILE name.
Field length is 11-255 bytes
(variable).

2-40 API Guide

2.10 Move Element Action

2.10 Move Element Action

The move element action API function call moves elements between inventory

locations along a map.

Assembler: ENHAEMOV

COBOL: ECHAEMOV

2.10.1 AEMOV_RQ Request Structure Fields

Immediately following the header is the data area of the AEMOV_RQ request
structure. The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names.

Field

Length

Description

AEMOV_RQ_ELM

Character 10

Element name

AEMOV_RQ_ELM_
THRU

Character 10

Through element name

AEMOV_RQ_ENV

Character 8

Environment name

AEMOV_RQ_SYSTEM

Character 8

System name

AEMOV_RQ_SUBSYS

Character 8

Subsystem name

AEMOV_RQ_TYPE

Character 8

Type name

AEMOV_RQ_STG_ID

Character 1

Stage id. Either stage id or stage
number must be specified, but not
both.

AEMOV_RQ_STG_NUM

Character 1

Stage number (1/2). Either stage id
or stage number must be specified,
but not both.

AEMOV_RQ_CCID

Character 12

Change control id

AEMOV_RQ_COMM

Character 40

Comment

AEMOV_RQ_SYN

Character 1

Synchronize (Y/N)

AEMOV_RQ_WIT_HIS

Character 1

Move with history (Y/N)

AEMOV_RQ_BYP_DEL

Character 1

Bypass element delete (Y/N)

Chapter 2. API Function Calls 2-41

2.10 Move Element Action

Field

Length

Description

AEMOV_RQ_SIGNIN

Character 1

Sign-in element (Y/N). Y is the
default

AEMOV_RQ_RETA _
SIGNO

Character 1

Retain sign-out (Y/N)

AEMOV_RQ_SIGNO_TO Character 8 Sign-out element to userid
AEMOV_RQ_JUMP Character 1 Move across environment
AEMOV_RQ_RESERVE Character 3 ** Reserved field **
AEMOV_RQ_WCCID_ Character 1 Where CCID type (A/C/R). C is

TYP

the default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AEMOV_RQ_WCCID

Character 12

1st where CCID value

Character 84

2nd through 8th where CCID
values

AEMOV_RQ_WPROGRO

Character 8

1st where processor group value

Character 56

2nd through 8th processor group
values

2-42 API| Guide

2.11 Print Element Action

2.11 Print Element Action

The print element action API function call prints selected information about an element
or library member, depending on the data entered in the FROM clause. You can print
from Endevor or selected output libraries (for example, a PDS).

Assembler: ENHAEPRE

COBOL: ECHAEPRE

2.11.1 AEPRE_RQ Request Structure Fields

Immediately following the header is the data area of the AEPRE_RQ request structure.
The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,
see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names. The stage id field is supported
by the API, but not by SCL.

Field Length Description

AEPRE_RQ_ELM Character 10 Element name

AEPRE_RQ_ELM_THRU Character 10 Through element name

AEPRE_RQ_VERSION Character 2 Element version (1-99)

AEPRE_RQ_LEVEL Character 2 Element level (0-99)

AEPRE_RQ_ENV Character 8 Environment name

AEPRE_RQ_SYSTEM Character 8 System name

AEPRE_RQ_SUBSYS Character 8 Subsystem name

AEPRE_RQ_TYPE Character 8 Type name

AEPRE_RQ_STG_ID Character 1 Stage id. Either stage id or stage
number must be specified, but not
both.

AEPRE_RQ_STG_NUM Character 1 Stage number (1/2). Either stage id

or stage number must be specified,
but not both.

AEPRE_RQ_DDN Character 8 File or DD name. CI1PRINT is the
default
AEPRE_RQ_NOCC Character 1 Suppress headings (Y/N)

Chapter 2. API Function Calls 2-43

2.11 Print Element Action

Field Length Description

AEPRE_RQ_COMP Character 1 Request is for component data
(Y/N)

AEPRE_RQ_PRT_OPT Character 1 Type of print requested

(B/C/H/M/S). B is the default.
The M option is not allowed if the
request is for component data

AEPRE_RQ_SEARCH Character 1 Search map (Y/N). Y is the default
AEPRE_RQ_RESERVE Character 3 ** Reserved field **
AEPRE_RQ_WCCID_TYP Character 1 Where CCID type (A/C/R). C is

the default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AEPRE_RQ_WCCID Character 12 1st where CCID value
Character 84 2nd through 8th where CCID
values
AEPRE_RQ_WPROGRO Character 8 1st where processor group value
Character 56 2nd through 8th processor group
values

2-44 API| Guide

2.12 Print Member Element Action

2.12 Print Member Element Action

The print member element action API function call prints selected information about
the member you specify. You can print from Endevor or from selected output libraries

(for example, a PDS).
Assembler: ENHAEPRM

COBOL: ECHAEPRM

2.12.1 AEPRM_RAQ Request Structure Fields

Immediately following the header is the data area of the AEPRM_RQ request
structure. The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

Field Length

Description

AEPRM_RQ_MBR Character 10

Member name

AEPRM_RQ_MBR_ THRU Character 10

Through member name

AEPRM_RQ_DDN Character 8

Source file or DD name where
member(s) reside. Either DDN or
DSN must be specified, but not
both.

AEPRM_RQ_DSN Character 44

Source data set name where
member(s) reside. Either DDN or
DSN must be specified, but not
both.

AEPRM_RQ_TDDN Character 8

Target file or DD name.
C1PRINT is the default.

Chapter 2. API Function Calls 2-45

2.13 Retrieve Element Action

2.13 Retrieve Element Action

The retrieve element action API function call copies an element to a user data set.
Assembler: ENHAERET

COBOL: ECHAERET

2.13.1 AERET_RQ Request Structure Fields

Immediately following the header is the data area of the AERET_RQ request structure.
The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,
see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names.

Field Length Description

AERET_RQ_ELM Character 10 Element name

AERET_RQ_ELM_THRU Character 10 Through element name

AERET_RQ_VERSION Character 2 Element version (1-99)

AERET_RQ_LEVEL Character 2 Element level (0-99)

AERET_RQ_ENV Character 8 Environment name

AERET_RQ_SYSTEM Character 8 System name

AERET_RQ_SUBSYS Character 8 Subsystem name

AERET_RQ_TYPE Character 8 Type name

AERET_RQ_STG_ID Character 1 Stage id. Either stage id or stage
number must be specified, but not
both.

AERET_RQ_STG_NUM Character 1 Stage number (1/2). Either stage id

or stage number must be specified,
but not both.

AERET_RQ_FILE Character 8 Target file or DD name. Either
DDN or DSN must be specified,
but not both

AERET_RQ_DSN Character 44 Target data set name. Either DDN
or DSN must be specified, but not
both

2-46 APl Guide

2.13 Retrieve Element Action

Field

Length

Description

AERET_RQ_MBR

Character 10

Target PDS member name must be
blank when through element name
is specified.

AERET_RQ_CCID

Character 12

Change control id

AERET_RQ_COMM

Character 40

Comment

AERET_RQ_REPLACE

Character 1

Replace member (Y/N)

AERET_RQ_NO_SIGNO

Character 1

No signout (Y/N)

AERET_RQ_EXPAND

Character 1

Expand includes (Y/N)

AERET_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AERET_RQ_SEARCH

Character 1

Search map (Y/N). Y is the
default.

AERET_RQ_RESERVE

Character 3

** Reserved field **

AERET_RQ_WCCID_
TYP

Character 1

Where CCID type (A/C/R). Cis
the default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AERET_RQ_WCCID

Character 12

1st where CCID value

Character 84

2nd through 8th where CCID
values

AERET_RQ_WPROGRO

Character 8

Ist where processor group value

Character 56

2nd through 8th processor group
values

Chapter 2. API Function Calls 2-47

2.14 Signin Element Action

2.14 Signin Element Action

2.14.1 AESIG_RQ Request Structure Fields

The signin element action API function call removes a user signout associated with an
element. It also enables you to sign out or reassign an element to another user.

Assembler: ENHAESIG

COBOL: ECHAESIG

Immediately following the header is the data area of the AESIG_RQ request structure.
The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names.

Field

Length

Description

AESIG_RQ_ELM

Character 10

Element name

AESIG_RQ_ELM_THRU

Character 10

Through element name

AESIG_RQ_ENV

Character 8

Environment name

AESIG_RQ_SYSTEM

Character 8

System name

AESIG_RQ_SUBSYS

Character 8

Subsystem name

AESIG_RQ_TYPE

Character 8

Type name

AESIG_RQ_STG_ID

Character 1

Stage id

AESIG_RQ_STG_NUM

Character 1

Stage number (1/2)

AESIG_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AESIG_RQ_SIGNO_TO

Character 8

Signout to userid

AESIG_RQ_SEARCH

Character 1

Search map (Y/N). Y is the default.

AESIG_RQ_RESERVE

Character 3

** Reserved field **

AESIG_RQ_WCCID_TYP

Character 1

Where CCID type (A/C/R). C is
the default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AESIG_RQ_WCCID

Character 12

1st where CCID value

2-48 API Guide

2.14 Signin Element Action

Field Length Description
Character 84 2nd through 8th where CCID
values
AESIG_RQ_WPROGRO Character 8 1st where processor group value
Character 56 2nd through 8th processor group
values

Chapter 2. API Function Calls 2-49

2.15 Transfer Element Action

2.15 Transfer Element Action

The transfer element action API function call transfers an element from one location to
another.

Note: Only the Endevor to Endevor type transfer action is supported.
Assembler: ENHAETRA

COBOL: ECHAETRA

2.15.1 AETRA_RQ Request Structure Fields

Immediately following the header is the data area of the AETRA_RQ request structure.
The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,
see the SCL Reference Guide.

The where CCID clause is limited to eight CCID values and the where processor
group clause is limited to eight processor group names.

Field Length Description
AETRA_RQ_ELM Character 10 From element name
AETRA_RQ_ELM_THRU Character 10 Through element name
AETRA_RQ_VERSION Character 2 From element version (1-99). Not
allowed if thru element is specified.
AETRA_RQ_LEVEL Character 2 From element level (0-99). Not
allowed if thru element is specified.
AETRA_RQ_TELM Character 10 Target element name. Not allowed
if thru element is specified.
AETRA_RQ_ENV Character 8 From environment name
AETRA_RQ_SYSTEM Character 8 From system name
AETRA_RQ_SUBSYS Character 8 From subsystem name
AETRA_RQ_TYPE Character 8 From type name
AETRA_RQ_STG_ID Character 1 From stage id. FEither stage id or
stage number must be specified, but
not both.
AETRA_RQ_STG_NUM Character 1 From stage number (1/2). Either

stage id or stage number must be
specified, but not both.

2-50 API Guide

2.15 Transfer Element Action

Field

Length

Description

AETRA_RQ_TENV

Character 8

Target environment name

AETRA_RQ_TSYSTEM

Character 8

Target system name

AETRA_RQ_TSUBSYS

Character 8

Target subsystem name

AETRA_RQ_TTYPE

Character 8

Target type name

AETRA_RQ_TSTG_ID

Character 1

Target stage id. Either target stage
id or target stage number must be
specified, but not both.

AETRA_RQ_TSTG_NUM

Character 1

Target stage number (1/2). Either
target stage id or target stage
number must be specified, but not
both.

AETRA_RQ_CCID

Character 12

Change control id

AETRA_RQ_COMM

Character 40

Comment

AETRA_RQ_NEWVER

Character 2

New target element version

AETRA_RQ_IGN_GFAIL

Character 1

Ignore generate fail

AETRA_RQ_BYP_
GENPRO

Character 1

Bypass generate processor

AETRA_RQ_PROGRO

Character 8

Processor group name

AETRA_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AETRA_RQ_BYP_
ELMDEL

Character 1

Bypass element delete (Y/N)

AETRA_RQ_BYP_
DELPRO

Character 1

Bypass delete processor (Y/N)

AETRA_RQ_WIT_HIS

Character 1

Move with history (Y/N)

AETRA_RQ_SYN

Character 1

Synchronize (Y/N)

AETRA_RQ_SIGNIN

Character 1

Sign-in element (Y/N)

AETRA_RQ_RETA_
SIGNO

Character 1

Retain sign-out (Y/N)

AETRA_RQ_SIGNO_TO

Character 8

Sign-out element to this user

AETRA_RQ_RESERVE

Character 3

** Reserved field **

AETRA_RQ_WCCID_
TYP

Character 1

Where CCID type (A/C/R). C is
the default value. If activated, the
CCID_WHERE_ALL optional
feature changes the default to A.

AETRA_RQ_WCCID

Character 12

1st where CCID value

Chapter 2. API Function Calls 2-51

2.15 Transfer Element Action

Field

Length

Description

Character 84

2nd through 8th where CCID
values

AETRA_RQ_WPROGRO

Character 8

1st where processor group value

Character 56

2nd through 8th processor group
values

2-52 API Guide

2.16 Update Element Action

2.16 Update Element Action

The update element action API function call updates an element in Stage 1, thereby
creating a new level for the element in Stage 1. Elements are updated only if there are
differences between the incoming source in the FROM location and the target Stage 1

source.

Assembler: ENHAEUPD

COBOL: ECHAEUPD

2.16.1 AEUPD_RQ Request Structure Fields

Immediately following the header is the data area of the AEUPD_RQ request structure.
The request structure is where you set your selection criteria.

All request selection fields are explained in the following table. For default values,

see the SCL Reference Guide.

Field

Length

Description

AEUPD_RQ_ELM

Character 10

Element name

AEUPD_RQ_ELM_THRU

Character 10

Through element name

AEUPD_RQ_DDN

Character 8

File or DD name where member(s)
reside. Either DDN or DSN must
be specified, but not both.

AEUPD_RQ_DSN

Character 44

Data set name where member(s)
reside. Either DDN or DSN must
be specified, but not both.

AEUPD_RQ_MBR

Character 10

PDS member name

AEUPD_RQ_ENV

Character 8

Environment name

AEUPD_RQ_SYSTEM

Character 8

System name

AEUPD_RQ_SUBSYS

Character 8

Subsystem name

AEUPD_RQ_TYPE

Character 8

Type name

AEUPD_RQ_CCID

Character 12

Change control id

AEUPD_RQ_COMM

Character 40

Comment

AEUPD_RQ_DEL

Character 1

Delete input source (Y/N)

AEUPD_RQ_OVESIGNO

Character 1

Override signout (Y/N)

AEUPD_RQ_BYP_
GENPRO

Character 1

Bypass generate processor (Y/N)

Chapter 2. API Function Calls 2-53

2.16 Update Element Action

Field Length Description
AEUPD_RQ_PROGRO Character 8 Processor group name
AEUPD_RQ_RESERVE Character 3 ** Reserved field **

2-54 API| Guide

2.17 Enterprise Package Function

2.17 Enterprise Package Function

AllFusion CM Enterprise Workbench is a web based administrator's tool. This facility
provides a way of linking Endevor and AllFusion Harvest CM packages together. It
consists of a web based front-end that enables you to perform package actions against
AllFusion Harvest CM and/or Endevor.

This feature includes fields for panels and storage structures to identify and allow
enterprise package selection. It also includes tools to enforce restrictions on package

actions.

2.17.1 Enterprise Package Fields

You can use include/excl
Menu for enterprise pack
selection flags. You can

ude selection criteria on the Package Foreground Options
ages. This feature operates just like the existing status
use these three values:

B A - List all packages.

® E - Limit the list to enterprise packages.

B X - Exclude enterprise packages from the list.

The default value is A. You can change the default by modifying the
ENTERPRISE_PKG field in the Configuration table, ENDICNFG. Shown below is a
copy of the modified panel.

DISPLAY -
CREATE/MODIFY -
CAST -
REVIEW -
EXECUTE -
SHIP -
BACKOUT -
COMMIT -
UTILITIES -
DistribuLink -

MmrOoONOOTbWN -

Package ID ===»

Limit selection Tist o
DISPLAY and UTILITIES

Denied..........

Display Package Information

Create or Modify Package

Prepare Package for Review

Approve or Deny Package

Submit or Execute Package

Ship Packages

Perform Backout or Backin Processing
Clear Backout Information

Reset, Delete, or Export Package
Perform Product Collection Request

ptions. These options are used by the

functions:

Y In-Execution.... Y
Y Executed........ Y
Y Committed....... Y
Y Enterprise Pkg.. A

A new field was added to the Display Package panel to indicate if the current package

is an enterprise package.

Possible values displayed in this field are:

® Y - This package is an enterprise package.

Chapter 2. API Function Calls 2-55

2.17 Enterprise Package Function

B N - This package is not an enterprise package.

Shown below is a copy of the modified panel.

OPTION ===»
blank - Display Action Summary B - Display Backout Information
A - Display Approvers S - Display SCL

R - Display Cast Report

N - Display Package Notes
PACKAGE ID: FHBDEC21 STATUS: IN-EDIT
DESCRIPTION: tst

SHARABLE PACKAGE:
BACKOUT ENABLED:

PACKAGE TYPE: STANDARD

N
Y

ENTERPRISE PACKAGE:

Y

EXECUTION WINDOW FROM: 22DECOO 00:00 TO: 31DEC79 00:00

USER ID DATE TIME
CREATED: BUCFRO2 22DEC99 15:15
LAST UPDATED:
CAST:
APPROVED/DENIED:
EXECUTED: ENDEVOR RC:
BACKED OUT:
BACKED IN:
COMMITTED:

Several enterprise package related fields exist in the ENHALPKG list package
structure. The field ALPKG_RQ_ENTPFLG exists in the request structure data area.
You can use this field to limit which packages are selected and returned to the calling
program. The allowed values are:

® Dblank - If left blank, a default value of A is assumed.
B A - Select all packages.
® E - Limit the list to only enterprise packages.
B X - Exclude enterprise packages.
The field ALPKG_RS_FLG_ECOR exists in the ENHALPKG response structure data

area. This field indicates if a package is an enterprise package. Possible values
displayed in this field are:

® Y - This package is an enterprise package.
® N - This package is not an enterprise package.
A new field, PECBENPK, was added to the $PECBDS Package Exit control structure

to indicate if the current package is an enterprise package. Possible values displayed
in this field are:

B Y - This package is an enterprise package.

® N - This package is not an enterprise package.

2-56 API Guide

2.17 Enterprise Package Function

2.17.2 Enterprise Package Restrictions

API enterprise package rules exist to ensure the enterprise packages remain in sync.
Listed below are the enterprise package restrictions:

B You can create or modify an Endevor enterprise package only by using the
Endevor package facility.

B You can correlate a package to an AllFusion CM Enterprise Workbench package
prior to execution by using AllFusion CM Enterprise Workbench. In other words,
the package must be in a status prior to IN-EXEC in order to be correlated to a
AllFusion CM Enterprise Workbench package.

® An Enterprise package can be comprised of multiple AllFusion Harvest CM
packages and/or multiple Endevor packages. A single AllFusion Harvest CM
and/or single Endevor package, however, can only be associated with one
Enterprise package. For example, AllFusion Harvest CM packages HARPKG1
and HARPKG?2 and Endevor packages ENDPKG1 and ENDPKG2 can be
associated with Enterprise package ENTPGK1, but HARPGK1 and ENDPKG1
can not also be associated with ENTPGK2.

B Cast a package using AllFusion CM Enterprise Workbench and/or the Endevor
package facility.

® Approve or deny a package using AllFusion CM Enterprise Workbench and/or the
Endevor package facility.

® You must use AllFusion CM Enterprise Workbench to execute, reset or delete a
package.

B You cannot reset an Endevor package if it is associated with an Enterprise
package. You must first remove the correlation.

1 Use the RESTRICT_BACKOUT option in the Optional Features Table to control
the rules related to the backout and backin actions. By default, you can perform
the backout and backin actions using AllFusion CM Enterprise Workbench or the
Endevor package facility. If you activate the RESTRICT_BACKOUT option, you
can only use AllFusion CM Enterprise Workbench to backout or backin enterprise
packages.

® Commit packages using AllFusion CM Enterprise Workbench or the Endevor
package facility.

" You can use AllFusion CM Enterprise Workbench to perform actions against
Endevor packages that are not correlated to a AllFusion CM Enterprise
Workbench package.

If you request one of the restricted actions against an enterprise package and Endevor
determines AllFusion CM Enterprise Workbench did not initiate the request, error
message PKMR410E is generated and the return and reason codes are set to 12 and 14
respectively. This is the text associated with the message:

PKMR410E Enterprise packages require the use of the Al1Fusion CM Enterprise Workbench
facility.

Chapter 2. API Function Calls 2-57

2.17 Enterprise Package Function

If you initiated the request from one of the ISPF package panels, an 'action failed'
short message appears in the panel message area. If you enter the PF1 key at this
point, the long message text described above appears.

2-58 API Guide

2.18 Approve Package

2.18 Approve Package

The approve package API function call allows you to approve a package.
Assembler: ENHAPAPP

COBOL: ECHAPAPP

2.18.1 APAPP_RQ Request Structure Fields

Field Length Description

APAPP_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to approve a package.

APAPP_RQ_RESERVE Character 3 ** Reserved field **

Chapter 2. API Function Calls 2-59

2.19 Backin Package

2.19 Backin Package

The backin package API function call allows you to backin a package.
Assembler: ENHAPBKI

COBOL: ECHAPBKI

2.19.1 APBKI_RQ Request Structure Fields

Field Length Description

APBKI_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to backin a package.

APBKI_RQ_RESERVE Character 3 ** Reserved field **

2-60 API Guide

2.20 Backout Package

2.20 Backout Package

The backout package API function call allows you to backout a package.
Assembler: ENHAPBKO

COBOL: ECHAPBKO

2.20.1 APBKO_RAQ Request Structure Fields

Field Length Description

APBKO_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to backout a package.

APBKO_RQ_RESERVE Character 3 ** Reserved field **

Chapter 2. API Function Calls 2-61

2.21 Cast Package

2.21 Cast Package

The cast package API function call allows you to cast a package. All the fields except
the package id field are optional. If left blank, the existing values specified when the

package was created or modified are used.
Assembler:

COBOL: ECHAPCAS

2.21.1 APCAS_RQ Request Structure Fields

ENHAPCAS

Field

Description

APCAS_RQ_PKGID

Character 16

Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to cast a package.

APCAS_RQ_VALCMP

Validate Components indicates
whether Endevor should validate
package components when casting
the package. Valid values are:

® Blank, use existing value from
package header

B Y - validate components and
do not allow the cast if
validation fails

B N - do not validate components

W - validate components, but
do not fail the cast if there are
errors

APCAS_RQ_BOENABLED

Backout enabled indicates whether
the backout/backin facility is
available for this package. Valid
values are:

® Blank, use existing value from
package header

B Y - backout/backin facility is
enabled

B N - backout/backin facility is
not enabled

2-62 APl Guide

2.21 Cast Package

Field

Length

Description

APCAS_RQ_EWF_DATE

Character 7

Execution window from date
indicates the time frame within
which you can execute a package.
Valid values are blank, use existing
date from the package header, or a
valid date in the format of
DDMMMYY (30JUNO00). If you
specify the from date, then you
must specify the from time. If you
leave the from date blank, the from
time is ignored.

APCAS_RQ_EWF_TIME

Character 5

Execution window from time
indicates the time frame within
which you can execute a package.
Valid values are blank, use existing
time from the package header, or a
valid time in the format of HH:MM
(23:59). If you specify the from
date, you must specify the from
time. If you leave the from date
blank, the from time is ignored.

APCAS_RQ_EWT_DATE

Character 7

Execution window to date indicates
the time frame within which you
can execute a package. Valid
values are blank, use existing date
from the package header, or a valid
date in the format of DDMMMYY
(30JUNO00). If you specity the to
date, you must specify the to time.
If you leave the to date blank, the
to time is ignored.

APCAS_RQ_EWT_TIME

Character 5

Execution window to time indicates
the time frame within which you
can execute a package. Valid
values are blank, use existing time
from the package header, or a valid
time in the format of HH:MM
(23:59). If you specify the to date,
you must specify the to time. If
you leave the to date, the to time is
ignored.

APCAS_RQ_RESERVE

Character 3

** Reserved field **

Character 3

Alignment characters

Chapter 2. API Function Calls 2-63

2.21 Cast Package

Note: All cast execution messages are written to the package cast report. You can
view this on-line or by executing an API List Cast action.

2-64 API Guide

2.22 Commit Package

2.22 Commit Package

The commit package API function call allows you to commit a package.
Assembler: ENHAPCOM

COBOL: ECHAPCOM

2.22.1 APCOM_RQ Request Structure Fields

Field Length Description

APCOM_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to commit a package.

APCOM_RQ_RESERVE Character 3 ** Reserved field **

Chapter 2. API Function Calls 2-65

2.23 Define Package

2.23 Define Package

The define package API function call allows you to to create or modify a package.
For the modify function, if a field is not specified, the existing data is retained. This
is also true for the SCL; if none of the COPY_PKGID, IMPORT DDN or
IMPORT_DSN fields are specified, the existing SCL is retained.

Assembler: ENHAPDEF

COBOL: ECHAPDEF

2.23.1 APDEF_RQ Request Structure Fields

Immediately following the header is the data area of the APDEF_RQ request structure.
The request structure is where you set your selection criteria.

Field Length Description
APDEF_RQ_PKGID Character 16 Package id. This field is required.
APDEF_RQ_FUNC Character 1 Function. Valid values are (C)reate

or (M)odify. This field is required.

APDEF_RQ_DESC Character 50 Package description. This field is
required for the create function.

APDEF_RQ_TYPE Character 1 Type of package. Valid values are
(S)tandard or (E)mergency. This
field will default to S for the create

function.

APDEF_RQ_SHARE Character 1 Sharable package (Y/N). This field
defaults to N for the create
function.

APDEF_RQ_APPEND Character 1 Append SCL to existing package.

This is only valid for the modify
function. One of the COPY FROM
SCL or IMPORT FROM SCL must
be specified in conjunction with
this field. This field will default to
N.

Note: One and only one of the
COPY_PKGID,
IMPORT_DDN or
IMPORT_DSN fields must
be specified in conjunction
with the APPEND option.

2-66 APl Guide

2.23 Define Package

Field Length

Description

APDEF_RQ_BOENABLED Character 1

Backout enabled flag (Y/N). This
field will default to Y for the create
function.

APDEF_RQ_EWF_DATE Character 7

Execution window from date
(DDMMMYY). This field is
optional.

If not specified and the function is
modify, the existing from date and
time are retained. If not specified
and the function is create, the
values default to the date and time
this function is executed.

APDEF_RQ_EWF_TIME Character 5

Execution window from time
(HH:MM). Valid values are 00:00
through 23:59.

APDEF_RQ_EWT_DATE Character 7

Execution window through date
(DDMMMYY). This field is
optional.

If not specified and the function is
modify, the existing through date
and time are retained. If not
specified and the function is create,
the values default to 31DEC79 and
00:00.

You are allowed to specify the
through date and time without
specifying the from date and time
for the create function. In this
case, the from date and time default
is used. In order to modify the
through date and time, you must
specify the from date and time.

APDEF_RQ_EWT_TIME Character 5

Execution window through time
(HH:MM). Valid values are 00:00
through 23:59.

APDEF_RQ_COPY_PKGID Character 16

Copy SCL from package id.

Note: For the create function, you
must specify one and only
one of the COPY_PKGID,
IMPORT_DDN or
IMPORT_DSN fields.

Chapter 2. API Function Calls 2-67

2.23 Define Package

Field

Length

Description

APDEF_RQ_IMPORT_DDN

Character 8

Import SCL from DD name.

Note: For the create function, you
must specify one and only
one of the COPY_PKGID,
IMPORT_DDN or
IMPORT_DSN fields.

APDEF_RQ_IMPORT_DSN

Character 44

Import SCL from dataset name.

Note: For the create function, you
must specify one and only
one of the COPY_PKGID,
IMPORT_DDN or
IMPORT_DSN fields.

APDEF_RQ_IMPORT_MBR

Character 10

Import SCL from member name.
Only valid when an PDS import
dataset name is specified.

APDEF_RQ_RMTSCL

Character 1

Import SCL file is remote.

2.23.1.1 Note Fields

Field

Length

Description

APDEF_RQ_NOTESI1

Character 60

Notes line 1

APDEF_RQ_NOTES2

Character 60

Notes line 2

APDEF_RQ_NOTES3

Character 60

Notes line 3

APDEF_RQ_NOTES4

Character 60

Notes line 4

APDEF_RQ_NOTESS

Character 60

Notes line 5

APDEF_RQ_NOTES6

Character 60

Notes line 6

APDEF_RQ_NOTES7

Character 60

Notes line 7

APDEF_RQ_NOTESS

Character 60

Notes line 8

APDEF_RQ_RESERVE

Character 2

** Reserved field **

The note fields are processed in order (NOTES1-NOTESS) until a blank field is found.
For the modify function, each field processed, replaces the entire existing 60 character
value. If more notes exist than are coded, the values of the additional existing lines

are retained.

Note: All DEFINE package execution messages are written to the package execution
report file. The DD name of this file is also CIMSGS1. Make sure a DD

statement is specified in your JCL for this report file.

2-68 API Guide

2.24 Delete Package

2.24 Delete Package

The delete package API function call allows you to delete a package. The older than
clause and the package status clause are not currently supported.

Assembler: ENHAPDEL

COBOL: ECHAPDEL

2.24.1 APDEL_RQ Request Structure Fields

Field Length Description

APDEL_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to delete a package.

APDEL_RQ_RESERVE Character 3 ** Reserved field **

Chapter 2. API Function Calls 2-69

2.25 Deny Package

2.25 Deny Package

The deny package API function call allows you to deny approval of a package. The
notes clause is not currently supported.

Assembler: ENHAPDEN

COBOL: ECHAPDEN

2.25.1 APDEN_RQ Request Structure Fields

Field Length Description

APDEN_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to deny approval of a
package.

APDEN_RQ_RESERVE Character 3 ** Reserved field **

2-70 API Guide

2.26 Execute Package

2.26 Execute Package

The execute package API function call allows you to execute a package. The
execution window clause and the package status clause are not currently supported.

All execute action messages are written to the package execution report file. The DD
name of this file is determined by the value specified in the AACTL_CMDMSG_DDN
field. If you do not specify a value, a default value of CIEXMSGS is used. Make
sure you specify a DD statement in your JCL for this report file.

Assembler: ENHAPEXE

COBOL: ECHAPEXE

2.26.1 APEXE_RQ Request Structure Fields

Field Length Description

APEXE_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to execute a package.

APEXE_RQ_RESERVE Character 3 ** Reserved field **

Chapter 2. API Function Calls 2-71

2.27 List Package Action Summary

2.27 List Package Action Summary

The list package action summary API function allows you to list element actions
associated with a package.

Assembler: ENHALSUM

COBOL: ECHALSUM

2.27.1 ALSUM_RQ Request Structure Fields

Field Length Description

ALSUM_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the
package data is returned or not.

ALSUM_RQ_RESERVE Character 3 ** Reserved field **

2.27.2 ALSUM_RS Response Structure Fields

Immediately following the header is the data area of the ALSUM_RS response
structure. This response structure maps the action summary data associated with a
package. The information contained in the response structure is explained in the
following table:

Field Length Description
ALSUM_RS_PKGID Character 16 Package id.
ALSUM_RS_STMTNO Character 5 SCL statement number. Value is
right justified and padded with
spaces.
ALSUM_RS_SITE Character 1 Site id.
ALSUM_RS_ACTN Character 8 Element action.
ALSUM_RS_NDVRRC Character 4 Highest Endevor return code
encountered.
ALSUM_RS_PROCRC Character 4 Highest processor return code
encountered.
ALSUM_RS_BEXD Character 7 Beginning of execution date.
ALSUM_RS_BEXT Character 5 Beginning of execution time.
ALSUM_RS_EEXD Character 7 End of execution date.
ALSUM_RS_EEXT Character 5 End of execution time.

2-72 API Guide

2.27 List Package Action Summary

Field Length Description

ALSUM_RS_CCID Character 12 CCID associated with this action.

ALSUM_RS_COMM Character 40 Comment associated with this
action.

ALSUM_RS_RUD Character 7 Last physical record update date.

ALSUM_RS_RUT Character 5 Last physical record update time.

ALSUM_RS RUU Character 8 Userid associated with last physical

record update.

2.27.2.1 Source Location Information

Field Length Description

ALSUM_RS_SAPREQ Character 1 Approval required flag. Possible
value are (Y)es or blank.

ALSUM_RS_SVAREQ Character 1 Validation required flag. Possible

value are (Y)es or blank.

ALSUM_RS_SLOC Character 1 Source location. Possible values
are:

'C' Endevor location
'F' File or DDNAME
'D' Data set

'A" Endevor archive

'P' Path
2.27.2.2 Data Available When Location is C or A
Field Length Description
ALSUM_RS_SSITE Character 1 Site id
ALSUM_RS_SENV Character 8 Environment
ALSUM_RS_SSYS Character 8 System
ALSUM_RS_SSBS Character 8 Subsystem
ALSUM_RS_SELMOFF BINARY (2 Element area offset from beginning
bytes) of record.

ALSUM_RS_STYP Character 8 Type
ALSUM_RS_SSTG Character 1 Stage number (1 or 2)

Chapter 2. API Function Calls 2-73

2.27 List Package Action Summary

Field Length Description
ALSUM_RS_SSTGN Character 8 Stage name
ALSUM_RS_SSTGI Character 1 Stage id

ALSUM_RS_SVVLL

Character 5

Version/level number. Format is
'VV.LL'

ALSUM_RS_SDD

Character 7

Last delta level date

ALSUM_RS_SDT

Character 5

Last delta level time

ALSUM_RS_SGD

Character 7

Last generate date

ALSUM_RS_SGT

Character 5

Last generate time

ALSUM_RS_SPD

Character 7

Last processor date

ALSUM_RS_SPT

Character 5

Last processor time

ALSUM_RS_SPPKGID

Character 16

Previous package id associated with
source.

ALSUM_RS_SPPKGTS

BINARY (8
bytes)

Cast timestamp associated with
source. Used to provide package id
uniqueness.

2.27.2.3 Data Available When Location is D, F or P

2.27.2.4 Target Location Information

Field Length Description

ALSUM_RS_SFILEOFF BINARY (2 File area offset from beginning of
bytes) record

ALSUM_RS_SNAMEOFF BINARY (2 Name area offset from beginning of
bytes) record

ALSUM_RS_SPPKGID

Character 16

Previous package id associated with
source.

ALSUM_RS_SPPKGTS BINARY (8 Cast timestamp associated with
bytes) source. Used to provide package id
uniqueness.
Field Length Description
ALSUM_RS_TAPREQ Character 1 Approval required flag. Possible

value are (Y)es or blank.

ALSUM_RS_TVAREQ

Character 1

Validation required flag. Possible
value are (Y)es or blank.

2-74 API| Guide

2.27 List Package Action Summary

Field

Length

Description

ALSUM_RS_TLOC

Character 1

Target location. Possible values
are:

'C' Endevor location
'F' File or DDNAME
'D' Data set

'A" Endevor archive

2.27.2.5 Data Available When Location is C or A

Field Length Description
ALSUM_RS_TSITE Character 1 Site id
ALSUM_RS_TENV Character 8 Environment
ALSUM_RS_TSYS Character 8 System
ALSUM_RS_TSBS Character 8 Subsystem

ALSUM_RS_TELMOFF

BINARY (2
bytes)

Element area offset from beginning
of record

ALSUM_RS_TTYP

Character 8

Type

ALSUM_RS_TSTG

Character 1

Stage number (1 or 2)

ALSUM_RS_TSTGN

Character 8

Stage name

ALSUM_RS_TSTGI

Character 1

Stage id

ALSUM_RS_TVVLL

Character 5

Version/level number. Format is
'VV.LL'

ALSUM_RS_TDD

Character 7

Last delta level date

ALSUM_RS_TDT

Character 5

Last delta level time

ALSUM_RS_TGD

Character 7

Last generate date

ALSUM_RS_TGT

Character 5

Last generate time

ALSUM_RS_TPD

Character 7

Last processor date

ALSUM_RS_TPT

Character 5

Last processor time

ALSUM_RS_TPPKGID

Character 16

Previous package id associated with
target.

ALSUM_RS_TPPKGTS

BINARY (8
bytes)

Cast timestamp associated with
target. Used to provide package id
uniqueness.

Chapter 2. API Function Calls 2-75

2.27 List Package Action Summary

2.27.2.6 Data Available When Location is D, F or P

Field Length Description
ALSUM_RS_TFILEOFF BINARY (2 File area offset from beginning of
bytes) record
ALSUM_RS_TNAMEOFF BINARY (2 Name area offset from beginning of
bytes) record
ALSUM_RS_TPPKGID Character 16 Previous package id associated with
target.
ALSUM_RS_TPPKGTS BINARY (8 Cast timestamp associated with
bytes) target. Used to provide package id
uniqueness.

2.27.2.7 Data Available When Location is: C, A, D, For P

Field Length Description
ALSUM_RS_DAREAS BINARY (2600 Data area buffer space for element,
bytes) file and name.

2-76 APl Guide

2.28 List Package Approvers

2.28 List Package Approvers

The list package approvers API function allows you to produce a list of approvers for
a package.

Assembler: ENHALAPP

COBOL: ECHALAPP

2.28.1 ALAPP_RQ Request Structure Fields

Immediately following the header is the data area of the ALAPP_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field Length Description

ALAPP_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the
package data is returned or not.

ALAPP_RQ_RESERVE Character 3 ** Reserved field **

2.28.2 ALAPP_RS Response Structure Fields

Immediately following the header is the data area of the ALAPP_RS response
structure. This response structure maps the approver data associated with a package.
The information contained in the response structure is explained in the following table:

Field Length Description

ALAPP_RS_GRPNM Character 16 Approver group name.

ALAPP_RS_ENVNM Character 8 Approver group's environment.

ALAPP_RS_OUNIQ BINARY (8 Approver group overflow
bytes) uniqueness.

ALAPP_RS_SEQNO BINARY (4 Record sequence number.
bytes)

ALAPP_RS_SITE Character 1 Site id.

Chapter 2. API Function Calls 2-77

2.28 List Package Approvers

Field

Length

Description

ALAPP_RS_APFLG

Character 1

Overall approval status. Possible
values are:

® Blank - approval pending
B A - approved
D - denied

ALAPP_RS_GRPTYP

Character 1

Approval group type. Possible
values are (S)tandard or (E)xternal.
External groups are groups defined
using an external security product
such as CA-ACF2 or
CA-TopSecret.

Character 1 Alignment character.
ALAPP_RS_QUORUM BINARY (2 Quorum count. Minimum number
bytes) of approvers that must approve this
package.
ALAPP_RS_NOAPPR BINARY (2 Number of approvers in this group.
bytes) For external groups, this number
starts at zero and is incremented
each time an approver approves or
denies the package. A maximum
of 16 approvers may exist per
record.
ALAPP_RS_RUD Character 7 Last physical record update date.
ALAPP_RS_RUT Character 5 Last physical record update time.
ALAPP_RS_RUU Character 8 Userid associated with last physical

record update.

ALAPP_RS_APID

Character 8

Userid of approver.

ALAPP_RS_APD

Character 7

Approval/denial date.

ALAPP_RS_APT

Character 5

Approval/denial time.

ALAPP_RS_APFLAG

Character 8

Approval status. Possible values
are blank (approval pending),
APPROVED or DENIED.

ALAPP_RS_APREQD

Character 8

Approval required indicator.
Possible values are
REQUIRED--approval or this user
is required, or blank--approval of
this user is optional.

ALAPP_RS_PKGID

Character 16

Package id

2-78 API Guide

2.29 List Package Backout Information

2.29 List Package Backout Information

The list package backout information API function allows you to list the backout
information associated with a package.

Assembler: ENHALBKO

COBOL: ECHALBKO

2.29.1 ALBKO_RQ Request Structure Fields

Field Length Description

ALBKO_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the
package data is returned or not.

ALBKO_RQ_RESERVE Character 3 ** Reserved field **

2.29.2 ALBKO_RS Response Structure Fields

Immediately following the header is the data area of the ALBKO_RS response
structure. This response structure maps the backout data associated with a package.
The information contained in the response structure is explained in the following table:

Field Length Description

ALBKO_RS_PKGID Character 16 Package id.

ALBKO_RS_SITE Character 1 Site id.

ALBKO_RS_RUD Character 7 Last physical record update date.
ALBKO_RS_RUT Character 5 Last physical record update time.
ALBKO_RS_RUU Character 8 Userid associated with last physical

record update.

ALBKO_RS_LOC Character 1 Source/target location flag.
Possible values are:

'S' record is associated with source
location.

"T' record is associated with target
location.

Chapter 2. API Function Calls 2-79

2.29 List Package Backout Information

Field

Length

Description

ALBKO_RS_DIR

Character 1

Backout direction. Possible values
are:

'T" member has been backed-in.

'O' member has been backed-out.

ALBKO_RS_DIRLIT

Character 10

Backout direction literal. Possible
values are:

'BACKED-IN' member has been
backed-in.

'BACKED-OUT' member has been
backed-out.

ALBKO_RS_MBR Character 8 Current member name.
ALBKO_RS_MBRNEW Character 8 New member name.
ALBKO_RS_MBRSAVE Character 8 Saved member name in binary

format.

ALBKO_RS_DSN

Character 44

Backout data set name.

Character 3

Alignment characters.

2-80 API Guide

2.30 List Package Cast Report

2.30 List Package Cast Report

The list package cast report API function allows you to list a cast report associated

with a package.
Assembler: ENHALCAS

COBOL: ECHALCAS

2.30.1 ALCAS_RQ Request Structure Fields

Field

Length

Description

ALCAS_RQ_PKGID

Character 16

Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the
package data is returned or not.

ALCAS_RQ_RESERVE

Character 3

** Reserved field **

2.30.2 ALCAS_RS Response Structure Fields

Immediately following the header is the data area of the ALCAS_RS response
structure. This response structure maps the cast report data associated with a package.
The information contained in the response structure is explained in the following table:

Field Length Description
ALCAS_RS_PKGID Character 16 Package id.
ALCAS_RS_SITE Character 1 Site id.

ALCAS_RS_RUD

Character 7

Last physical record update date.

ALCAS_RS_RUT

Character 5

Last physical record update time.

ALCAS_RS_RUU

Character 8

Userid associated with last physical
record update.

Character 3

Alignment characters.

ALCAS_RS_SEQNO

BINARY (4
bytes)

Report line sequence number,
starting with zeros and incremented
by 1.

ALCAS_RS_RPT

Character 133

Cast report line.

Character 3

Alignment characters.

Chapter 2. API Function Calls 2-81

2.31 List Package Correlation

2.31 List Package Correlation

The list package correlation API function allows you to list correlation records
associated with a package.

Assembler: ENHALCOR

COBOL: ECHALCOR

2.31.1 ALCOR_RQ Request Structure Fields

Field Length Description

ALCOR_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the
package data is returned or not.

ALCOR_RQ_TYPE Character 1 Correlation type. Possible values
are:

® H - Enterprise Package
® | - Infoman

8 U - User defined

ALCOR_RQ_RESERVE Character 3 ** Reserved field **

2.31.2 ALCOR_RS Response Structure Fields

Immediately following the header is the data area of the ALCOR_RS response
structure. This response structure maps correlation data associated with a package.
The information contained in the response structure is explained in the following table:

Field Length Description

ALCOR_RS_PKGID Character 16 Package id.

ALCOR_RS_TYPE Character 1 Correlation type. Possible values
are:

H - Enterprise package
I - Infoman

U - user defined

Character 3 Alignment characters.
ALCOR_RS_SEQNO BINARY (4 Record sequence number.
bytes)

2-82 API Guide

2.31 List Package Correlation

Field Length Description
ALCOR_RS_SITE Character 1 Site id.
ALCOR_RS_RUD Character 7 Last physical record update date.
ALCOR_RS_RUT Character 5 Last physical record update time.
ALCOR_RS_RUU Character 8 Userid associated with last physical

record update.
ALCOR_RS_CORRID Character 32 Correlation id.
ALCOR_RS_DATA Character 80 Correlation data.

Character 3 Alignment characters.

Chapter 2. API Function Calls 2-83

2.32 List Package Header

2.32 List Package Header

The list package header API function allows you to produce a list of packages and the

data associated with each.

Assembler: ENHALPKG

COBOL: ECHALPKG

2.32.1 ALPKG_RQ Request Structure Fields

Field

Length

Description

ALPKG_RQ_PKGID

Character 16

Package id. Wildcarding is
supported. Security rules and user
exits play a part in which records
are returned.

ALPKG_RQ_PKG_TYPE

Character 1

Package type selection criteria.
Valid values are blank, (S)tandard
or (E)mergency. If left blank, both
types of packages are eligible for
selection.

ALPKG_RQ_IN_EDIT

Character 1

Package status selection criteria.
Valid values are blank, Y or N. If
you want to eliminate packages in
this status, specify a value of N in
this field. If left blank, a default
value of Y is assumed.

ALPKG_RQ_IN_APPR

Character 1

Package status selection criteria.
Valid values are blank, Y or N. If
you want to eliminate packages in
this status, specify a value of N in
this field. If left blank, a default
value of Y is assumed.

ALPKG_RQ_DENIED

Character 1

Package status selection criteria.
Valid values are blank, Y or N. If
you want to eliminate packages in
this status, specify a value of N in
this field. If left blank, a default
value of Y is assumed.

2-84 API Guide

2.32 List Package Header

Field

Length

Description

ALPKG_RQ_APPROVED

Character 1

Package status selection criteria.
Valid values are blank, Y or N.
Blank and Y produce the same
results. If you want to eliminate
packages in this status, specify a
value of N in this field. If left
blank, a default value of Y is
assumed.

ALPKG_RQ_IN_EXEC

Character 1

Package status selection criteria.
Valid values are blank, Y or N. If
you want to eliminate packages in
this status, specify a value of N in
this field. If left blank, a default
value of Y is assumed.

ALPKG_RQ_EXEC

Character 1

Package status selection criteria.
Valid values are blank, Y or N. If
you want to eliminate packages in
this status, specify a value of N in
this field. If left blank, a default
value of Y is assumed.

ALPKG_RQ_COMMIT

Character 1

Package status selection criteria.
Valid values are blank, Y or N. If
you want to eliminate packages in
this status, specify a value of N in
this field. If left blank, a default
value of Y is assumed.

ALPKG_RQ_ENTPFLG

Character 1

Enterprise package flag. Valid
values are blank, (A)ll, (E)nterprise
only or e(X)clude enterprise
packages. If left blank, a default
value of A is assumed.

Chapter 2. API Function Calls 2-85

2.32 List Package Header

Field

Length

Description

ALPKG_RQ_DTE_TYPE

Character 2

Package 'older than days' date type
selection criteria. Valid values are
blank, (CR)eate, (MO)dify, (CA)st,
(AP)prove/deny, (EX)ecute,
(BO)backout, (BI)backin or
(CO)mmit. This field is used in
conjunction with the days old field.
This date type in the package
record is compared against the
current date to determine if the date
is older than the number of days
specified. If this field is blank
and/or the days old field is zero or
blank, selection is not affected.

ALPKG_RQ_DAYS_OLD

Character 3

Package 'older than days' selection
criteria. Valid values are blank and
0-999. The API right justifies and
zero fills this field as necessary.
This field is used in conjunction
with the date type field. The date
type in the package record is
compared against the current date
to determine if the date is older
than this number of days. If this
field is blank and/or the date type
field is zero or blank, selection is
not affected.

2-86 APl Guide

2.32 List Package Header

Field

Length

Description

ALPKG_RQ_APPRID

Character 8

Package approver selection criteria.
Valid values are blank or a fully
qualified user id. This selection
criteria is applied after all other
criteria; package id, package type,
package status, and days old. If
this approver id appears in any of
the groups associated with a
package, the package is selected
regardless of whether the user has
already approved/denied the
package or not.

The API may be unable to apply
the selection approver id against all
the approver groups associated with
a package. This condition only
occurs under the following
conditions:

B The selection approver id is
specified and it is different
than the TSO/jobname user id
and the approver group is an
external approver group.

8 The API issues message
APIO091W each time this
condition is encountered.

® The message identifies the
package id and approver group
name.

B The selection process continues
with the next approver group.

ALPKG_RQ_FLAG

Character 1

Data request flag. It determines the
amount of package header
information written to the response
block. Valid values are (blank)
return all fields and (B) return only
basic fields. If you enable this
option, use the ALPKB_RS
structure in ENHALPKG to map
the response fields.

ALPKG_RQ_RESERVE

Character 2

** Reserved field **

Character 3

Alignment characters

Chapter 2. API Function Calls 2-87

2.32 List Package Header

2.32.2 List Package Response Structure Fields

2.32.3 ALPKG_RS Response Structure Fields

There are two types of response structures. The structure type depends on the value
you specified in the ALPKG_RQ_FLAG field. If you specified 'B', use the ALPKB
structure. Regarding your request type for the the response structure, always specify
the base response structure, ALPKG_RS, as the last parameter in the call to the API

(ENASNDVR).

Immediately following the header is the data area of the ALPKG_RS response
structure. The information contained in the response structure is explained in the

following table:

Field Length Description
ALPKG_RS_PKGID Character 16 Package id.
ALPKG_RS_SITE Character 1 Site id.

ALPKG_RS_COMMENT

Character 50

Comment or description associated
with this package.

ALPKG_RS_PKG_TYPE

Character 10

Package type selection criteria.
Possible values are STANDARD or
EMERGENCY.

ALPKG_RS_PSHR

Character 1

Package shr option. Possible
values are:

"Y' anyone can edit or cast package.

'N' only the creator can edit or cast
package.

ALPKG_RS_BOFLG Character 1 Package backout enabled flag.

Possible values are:

"Y' backout enabled.

'N' backout is not enabled.
ALPKG_RS_WSD Character 7 Execution window start date.
ALPKG_RS_WST Character 5 Execution window start time.
ALPKG_RS_WED Character 7 Execution window end date.
ALPKG_RS_WET Character 5 Execution window end time.

ALPKG_RS_STAT

Character 12

Package status. Possible values are
IN-EDIT, IN-APPROVAL,
DENIED, APPROVED,
IN-EXECUTION, EXECUTED,
EXEC-FAILED or COMMITTED.

2-88 API Guide

2.32 List Package Header

Field

Length

Description

ALPKG_RS_FLG_AGRE

Character 1

Approver group records exist flag.
Possible values are (Y)es or (N)o.

ALPKG_RS_FLG_CARE

Character 1

Cast report records exist flag.
Possible values are (Y)es or (N)o.

ALPKG_RS_FLG_CORE

Character 1

Correlation records exist flag.
Possible values are (Y)es or (N)o.

ALPKG_RS_FLG_ECOR

Character 1

Enterprise correlation record flag.
Indicates whether or not this

package as an enterprise package.
Possible values are (Y)es or (N)o.

ALPKG_RS_FLG_BONE

Character 1

Backout not in effect flag. Possible
values are (Y)es or (N)o.

ALPKG_RS_FLG_BORE

Character 1

Backout records exist flag.
Possible values are (Y)es or (N)o.

ALPKG_RS_FLG_ABN

Character 1

Execution of package abnormally
terminated flag. Possible values
are (Y)es or (N)o.

ALPKG_RS_FLG_PBO

Character 1

Package has been backed-out flag.
Possible values are (Y)es or (N)o.

ALPKG_RS_FLG_BBHB

Character 1

Package backin/backout has begun
flag. Possible values are (Y)es or
(N)o.

ALPKG_RS_FLG_SAF

Character 1

External SAF flag. Possible values
are (Y)es or (N)o.

ALPKG_RS_EXRC

Character 4

Execution return code. Possible
values are blank, 0000, 0004, 0012
or 0016. This field is blank until
the package is executed.

ALPKG_RS_BSTAT

Character 10

Package backout status. Possible
values are BACKEDOUT or
blanks.

Character 1

Alignment character.

ALPKG_RS_NOCORR

BINARY (2
bytes)

Number of correlations defined.

ALPKG_RS_CRD

Character 7

Date package was created.

ALPKG_RS_CRT

Character 5

Time package was created.

ALPKG_RS_CRU

Character 8

Userid associated with the create
action.

Chapter 2. API Function Calls 2-89

2.32 List Package Header

Field

Length

Description

ALPKG_RS_MOD

Character 7

Date package SCL was last
modified.

ALPKG_RS_MOT

Character 5

Time package SCL was last
modified.

ALPKG_RS_MOU Character 8 Userid associated with the SCL
update action.
ALPKG_RS_CAD Character 7 Date package was cast.
ALPKG_RS_CAT Character 5 Time package was cast.
ALPKG_RS_CAU Character 8 Userid associated with the cast

action.

ALPKG_RS_APD

Character 7

Date of final approval/denied of
package.

ALPKG_RS_APT

Character 5

Time of final approval/denied of
package.

ALPKG_RS_EXBD Character 7 Package execution begin date.
ALPKG_RS_EXBT Character 5 Package execution begin time.
ALPKG_RS_EXED Character 7 Package execution end date.
ALPKG_RS_EXET Character 5 Package execution end time.
ALPKG_RS_EXU Character 8 Userid associated with the execute
action.

ALPKG_RS_BOD Character 7 Date package was backed-out.
ALPKG_RS_BOT Character 5 Time package was backed-out.
ALPKG_RS_BOU Character 8 Userid associated with the backout

action.

ALPKG_RS_BID

Character 7

Date package was backed-in.

ALPKG_RS_BIT

Character 5

Time package was backed-in.

ALPKG_RS_BIU

Character 8

Userid associated with the backin
action.

ALPKG_RS_COD

Character 7

Date package was committed.

ALPKG_RS_COT

Character 5

Time package was committed.

ALPKG_RS_COU

Character 8

Userid associated with the
committed action.

ALPKG_RS_RUD

Character 7

Date package header record was
last updated.

2-90 API Guide

2.32 List Package Header

Field Length Description
ALPKG_RS_RUT Character 5 Time package header record was
last updated.
ALPKG_RS_RUU Character 8 Userid associated with the last
update.
ALPKG_RS_NOTEI1 Character 60 Package note record.
ALPKG_RS_NOTE2 Character 60 Package note record.
ALPKG_RS_NOTE3 Character 60 Package note record.
ALPKG_RS_NOTE4 Character 60 Package note record.
ALPKG_RS_NOTES Character 60 Package note record.
ALPKG_RS_NOTE®6 Character 60 Package note record.
ALPKG_RS_NOTE7 Character 60 Package note record.
ALPKG_RS_NOTES Character 60 Package note record.
Character 2 Alignment characters.

2.32.4 ALPKB_RS Response Structure Fields

There are two types of response structures. The structure type depends on the value
you specified in the ALPKG_RQ_FLAG field. If you specified 'B', use the ALPKB
structure. Regarding your request type for the the response structure, always specify
the base response structure, ALPKG_RS, as the last parameter in the call to the API
(ENASNDVR).

Immediately following the header is the data area of the ALPKG_RS response
structure. The information contained in the response structure is explained in the
following table:

Field Length Description
ALPKB_RS_PKGID Character 16 Package id
ALPKB_RS_COMMENT Character 50 Comment or description
ALPKB_RS_PKG_TYPE Character 10 Package types:

® Standard

= Emergency

Chapter 2. API Function Calls 2-91

2.32 List Package Header

Field Length Description
ALPKB_RS_STAT Character 12 Package statuses:
B In-edit

In-approval
Denied
Approved
In-execution
Executed
Exec-failed

Committed

2-92 API Guide

2.33 List Package SCL

2.33 List Package SCL

The list package SCL API function allows you to list the SCL associated with a

package.

Assembler: ENHALSCL

COBOL: ECHALSCL

2.33.1 ALSCL_RQ Request Structure Fields

Field

Length

Description

ALSCL_RQ_PKGID

Character 16

Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the
package data is returned or not.

ALSCL_RQ_RESERVE

Character 3

** Reserved field **

Character 1

Alignment character

2.33.2 ALSCL_RS Response Structure Fields

Immediately following the header is the data area of the ALSCL_RS response
structure. This response structure maps the SCL data associated with a package. The
information contained in the response structure is explained in the following table:

Field Length Description
ALSCL_RS_PKGID Character 16 Package id.
ALSCL_RS_SITE Character 1 Site id.

ALSCL_RS_RUD

Character 7

Last physical record update date.

ALSCL_RS_RUT

Character 5

Last physical record update time.

ALSCL_RS_RUU

Character 8

Userid associated with last physical
record update.

Character 1

Alignment character.

ALSCL_RS_NOSTMTS

BINARY (2
bytes)

Number of SCL statements in this
record. A maximum of 10
statements may exist in one record.

Character 2

Alignment characters.

Chapter 2. API Function Calls 2-93

2.33 List Package SCL

Field

Length

Description

ALSCL_RS_SCL

Character 80

Package SCL. This is a fixed
length area of 800 characters. If
the number of SCL statement
and/or clauses (NOSTMTY) is less
than 10, the remaining 80 character
blocks are initialized to spaces. It
is possible to have more than one
statement with a single record.

Character 2

Alignment characters.

2-94 API Guide

2.34 Package Correlation

2.34 Package Correlation

The package correlation API function allows you to create, delete or modify a

correlation record associated with a package.

Assembler: ENHAPCOR

COBOL: ECHAPCOR

2.34.1 APCOR_RQ Request Structure Fields

Field Length

Description

APCOR_RQ_PKGID Character 16

Package id. Wildcarding is not
supported. Security rules and user
exits are not enforced for this
action since it is an internal
function.

APCOR_RQ_FUNC Character 1

Function requested. Possible
values are:

'C' create a correlation record
'D' delete a correction record

'M' modify the DATA field value
of an existing correlation record

APCOR_RQ_TYPE Character 1

Correlation type. Possible values
are:

'H' Enterprise package
T Infoman

'U' User defined

APCOR_RQ_CORRID Character 32

Correlation id. Id of the Enterprise
package, Infoman or User defined
entity associated with this package.

APCOR_RQ_DATA Character 80

Free form data, depending of the
application.

APCOR_RQ_RESERVE Character 3

** Reserved field **

Character 3

Alignment characters

Chapter 2. API Function Calls 2-95

2.35 Reset Package

2.35 Reset Package

The reset package API function allows you to reset a package.
Assembler: ENHAPRES

COBOL: ECHAPRES

2.35.1 APRES_RQ Request Structure Fields

Field Length Description

APRES_RQ_PKGID Character 16 Package id. Wildcarding is not
supported. Security rules and user
exits play a part in whether the user
is allowed to reset a package.

APRES_RQ_RESERVE Character 3 ** Reserved field **

2-96 API Guide

2.36 Submit Package Request

2.36 Submit Package Request

The submit package request API function call defines the parameters necessary to
submit a batch package job to the internal reader or to CA-7. Specify the jobcard
location information, along with the "TO' information and the appropriate action
options. The API builds the appropriate jobstream and submits the job for execution.

Assembler: ENHAPSUB

COBOL: ECHAPSUB

2.36.1 APSUB_RQ Request Structure Fields

Immediately following the header is the data area of the APSUB_RQ request structure.
The request structure is where you set your selection criteria.

Field Length

Description

APSUB_RQ_PKGID CHAR 16

Package id of the package you wish
to submit. Wildcarding is
permitted.

2.36.1.1 Jobcard Location Information

Field Length

Description

APSUB_RQ_JCDDN CHAR 8

File or DD name where a valid
jobcard can be found. Either DDN
or DSN must be specified, but not
both.

APSUB_RQ_JCDSN CHAR 44

Data set name where a valid
jobcard can be found. Either DDN
or DSN must be specified, but not
both.

APSUB_RQ_JCMBR CHAR 8

Member name where the jobcard
can be found. This field is used in
conjunction with the DSN field.

CHAR 2

** Reserved field **

Chapter 2. API Function Calls 2-97

2.36 Submit Package Request

2.36.1.2 Submit TO Location Information

Field Length

Description

APSUB_RQ_TOLOC CHAR 8

Submit to location. Either enter an
internal reader DDNAME or the
literal CA7.

2.36.1.3 Action Options

Field Length

Description

APSUB_RQ_WSTATUS CHAR 1

Where current package status.
Valid values are:

A or blank - Approved
F - Execute Failed

B - Both (approved or execute
failed)

APSUB_RQ_MULTIS CHAR 1

Multiple jobstreams. Submit a
unique job for each package. This
parameter comes into play if you
wildcard the pack age id field.
Valid values are:

Y - Yes
N or blank - No.

Note: This field is ignored for
CAT7 processing.

APSUB_RQ_INCRIJN CHAR 1

Increment jobname. Increment the
last character in the jobcard you
provide. Use this option in
conjunction with the multiple
jobstream field to increment the last
character in the JCL jobcard for
each job stream you submit. Valid
values are:

Y or blank - Yes
N - No

Note: This field is ignored for
CA7 processing.

2-98 API Guide

2.36 Submit Package Request

Field

Length

Description

APSUB_RQ_JCLPROC

CHAR 8

JCL procedure name. Identifies the
name of the JCL procedure you
wish to invoke in the submit
package action JCL. If you do not
specify a procedure name, the
Endevor procedure is invoked.

2.36.1.4 CAZ7 Action Options

Field

Length

Description

APSUB_RQ_DEPJN

CHAR 8

Dependent job name. To make this
job dependent on another CA7 job,

enter the job name of the dependent
job name.

CHAR 7

** Reserved field **

Chapter 2. API Function Calls 2-99

2.37 List Approver Group

2.37 List Approver Group

The list approver group API function call extracts information about the approver
group from the MCF that satisfies the criteria you define in the ALAGR_RQ request
structure. Depending on the response file DDN (AACTL_LIST_DDN) field value, the
first of the last response structure is placed in your defined response area,
ALAGR_RS. Refer to 2.2, “Control Structure” on page 2-3 for details. This allows
you to check the response quickly if you are looking for a specific approver group.
The API also writes all responses generated by your request to an external data set if
you specified a file output DD name in the control structure.

Assembler: ENHALAGR

COBOL: ECHALAGR

2.37.1 ALAGR_RQ Request Structure Fields

Immediately following the header is the data area of the ALAGR_RQ request
structure. The request structure is where you set your selection criteria. All request
selection fields are explained in the following table.

Field Length Description

ALAGR_RQ_RETURN Character 1 F - for return only the first
record that satisfies the request.

A - for return all records that
satisfy the request.

ALAGR_RQ_ENV Character 8 Environment name. You cannot
specify a wildcard character in
this field.

ALAGR_RQ_AGRNAME Character 16 Approver group name. This
field can contain a wildcard
character.

Searching: Map searching is not available for this request. The location value,
Environment, must be explicitly specified. The approver group name can contain a
wildcard.

2.37.2 ALAGR_RS Response Structure Fields

Immediately following its header is the data area of the ALAGR_RS response
structure. The information contained in the response structure is explained in the
following table.

2-100 API Guide

2.37 List Approver Group

Field

Length

Description

ALAGR_RS_SITE

Character 1

Site id

ALAGR_RS_ENV

Character 8

Environment name

ALAGR_RS_STG_NAME

Character 8

Stage name

ALAGR_RS_STG_ID

Character 1

Stage id

ALAGR_RS_STG_NUM

Character 1

Stage number

ALAGR_RS_AGRNAME

Character 16

Approver group name

ALAGR_RS_UPD_CNT

Zoned Char 8

Record update count

ALAGR_RS_UPD_DATE

Zoned Char 8

Update date YYYYMMDD

ALAGR_RS_UPD_TIME

Zoned Char 8

Update time HHMMSSTH

ALAGR_RS_UPD_USER

Character 8

Update user id

ALAGR_RS_FMID

Zoned Char 5

Record created release id

ALAGR_RS_QUORM

Zoned Char 8

Quorum count

ALAGR_RS_TITLE

Character 50

Title

ALAGR_RS_AUSER

16 * Character
8

16 Approver user id's

ALAGR_RS_AUREQ

16 * Character
1

16 Approver Required flags -
blank or Y'

Chapter 2. API Function Calls 2-101

2.38 List Approver Group Junctions

2.38 List Approver Group Junctions

The list approver group junctions API function call extracts information about the
approver group from the MCF that satisfies the criteria you define in the ALAGJ_RQ
request structure. Depending on the response file DDN (AACTL_LIST_DDN) field
value, the first of the last response structure is placed in your defined response area,
ALAGIJ_RS. Refer to 2.2, “Control Structure” on page 2-3 for details. This allows
you to check the response quickly if you are looking for a specific approver group
junction. The API also writes all responses generated by your request to an external
data set if you specified a file output DD name in the control structure.

Assembler: ENHALAG]J

COBOL: ECHALAGJ

2.38.1 ALAGJ_RQ Request Structure Fields

Immediately following the header is the data area of the ALAGJ_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field

Length

Description

ALAGJ_RQ_RETURN

Character 1

F - for return only the first record
that satisfies the request.

A - for return all records that
satisfy the request.

ALAGJ_RQ_ENV

Character 8

Environment name. This field
cannot contain a wildcard character.

ALAGJ_RQ_SYSTEM

Character 8

System name. This field may be
wildcarded by leaving it blank. If
the system name is specified, it
must be explicit.

ALAGJ_RQ_SUBSYS

Character 8

Subsystem name. This field may be
wildcarded by leaving it blank. If

the subsystem name is specified, it

must be explicit.

ALAGJ_RQ_TYPE

Character 8

Type name. This field may be
wildcarded by leaving it blank. If
the type name is specified, it must
be explicit.

2-102 API Guide

2.38 List Approver Group Junctions

Field Length Description

ALAGJ_RQ_STG_NUM Character 1 Stage number. This field may be
wildcarded by leaving it blank. If
the stage number name is specified,
it must be explicit.

Searching: Map searching is not available for this request because these key values
can be stored in the MCF with the wild card values. The location value, Environment,
must be explicitly specified. The other keys (System, Subsystem, Type, and Stage)
may be individually wildcarded by leaving the field blank. Otherwise, the values
specified for these fields are treated as explicit key values.

2.38.2 ALAGJ_RS Response Structure Fields

Immediately following its header is the data area of the ALAGJ_RS response structure.
The information contained in the response structure is explained in the following table.

Field Length Description
ALAGIJ_RS_SITE Character 1 Site id

ALAGJ_RS_ENV Character 8 Environment name
ALAGJ_RS_SYSTEM Character 8 System name
ALAGJ_RS_SUBSYS Character 8 Subsystem name
ALAGJ_RS_TYPE Character 8 Type name
ALAGJ_RS_STG_NUM Character 1 Stage number
ALAGJ_RS_UPD_CNT Zoned Char 8 Record update count
ALAGJ_RS_UPD_DATE Zoned Char 8 Update date YYYYMMDD
ALAGJ_RS_UPD_TIME Zoned Char 8 Update time HHMMSSTH
ALAGJ_RS_UPD_USER Character 8 Update User id
ALAGJ_RS_FMID Zoned Char 5 Record created release id
ALAGJ_RS_JUN_TYPE Character 2 Junction type:

'ST' - Standard

'EM' - Emergency

ALAGJ_RS_AGNME Character 16 Approver Group name

Chapter 2. API Function Calls 2-103

2.39 List Components/Where-used

2.39 List Components/Where-used

The list components API function call allows you to to produce a component list for
an element or a 'where used' list for an element, member, related object or related
comment. You can specify output filters to limit the list to a specific location. Only
responses matching the filter criteria are selected.

The format of the output depends on the value specified in the ALCMP_RQ_RECTYP
and APCMP_RQ_BLDSCL fields. Refer to the description of these fields for
additional information. Partial or full wildcarding is permitted on all the inventory
location and output filter fields. Leaving a field value blank is equivalent to
specifying an "*'.

By fully qualify the location data, you are requesting a list for a specific version of the
element, member, object or comment. In most cases, however, you may find the
results to be more meaningful if all the location data fields, except for the element,
member, object or comment name are left blank or set to '*' (wildcard).

Assembler: ENHALCMP

COBOL: ECHALCMP

2.39.1 ALCMP_RQ Request Structure Fields

Immediately following the header is the data area of the ALCMP_RQ request
structure. The request structure is where you set your selection criteria. All request
selection fields are explained in the following table.

Field Length Description

ALCMP_RQ_RQTYPE Character 1 Type of entity the request is for:
E - Footprinted element
M - Non-footprinted member
O - Related object

C - Related comment

2.39.1.1 Element Location Data — Request Type (E)

Field Length Description

ALCMP_RQ_ELM Character 10 Element you wish to obtain
relationship data for. The
inventory location data is applied to
the element name.

2-104 API Guide

2.39 List Components/Where-used

Field

Length

Description

ALCMP_RQ_ENV

Character 8

Environment name

ALCMP_RQ_SYSTEM

Character 8

System name

ALCMP_RQ_SUBSYS

Character 8

Subsystem name

ALCMP_RQ_TYPE

Character 8

Type name

ALCMP_RQ_STG_NUM

Character 1

Stage number (1/2)

ALCMP_RQ_DIR

Character 1

Direction indicator:

C - Component list request for an
element

W - Where used list request for a
component

Character 26

** Reserved field **

2.39.1.2 Member Location Data — Request Type (M)

Field

Length

Description

ALCMP_RQ_MBR

Character 10

Member you want to obtain
relationship data for.

ALCMP_RQ_DSN

Character 44

Data set name

Character 16

** Reserved field **

2.39.1.3 Object Location Data — Request Type (O)

Field

Length

Description

ALCMP_RQ_OBJNAME

Character 70

Related object you want to obtain
relationship data for.

2.39.1.4 Comment Location Data — Request Type (C)

Field

Length

Description

ALCMP_RQ_COMMNAME Character 70

Related comment you want to
obtain relationship data for.

Chapter 2. API Function Calls 2-105

2.39 List Components/Where-used

2.39.1.5 Output Filters — Request Type (C, E, M, O)

Field Length Description
ALCMP_RQ_EXCLREL Character 1 Exclude related element/member
data (Y/N)
ALCMP_RQ_FENV Character 8 Environment name
ALCMP_RQ_FSYSTEM Character 8 System name
ALCMP_RQ_FSUBSYS Character 8 Subsystem name
ALCMP_RQ_FTYPE Character 8 Type name
ALCMP_RQ_FSTG_NUM Character 1 Stage number (1/2)

2.39.1.6 Build Generate Action SCL

Field Length Description

ALCMP_RQ_BLDSCL Character 1 Build GENERATE action SCL
statements (Y/N). If you code a
value of Y in this field, the output
consists of 80 character SCL
statements. If you code a value of
N, standard API response records,
mapped by ALCMP_RS, are
returned. When selecting this
option, you must define
AACTL_LIST DDN as a fixed
block, 80 character file.

ALCMP_RQ_GENV Character 8 Environment name
ALCMP_RQ_GSYSTEM Character 8 System name
ALCMP_RQ_GSUBSYS Character 8 Subsystem name
ALCMP_RQ_GTYPE Character 8 Type name
ALCMP_RQ_GSTG_ID Character 1 Stage id as defined in the

C1DEFLTS table. You can code
stage id or stage number, but not

both.

ALCMP_RQ_GSTG_NUM Character 1 Stage number (1/2). You can code
stage id or stage number, but not
both.

ALCMP_RQ_GCCID Character 12 CCID action option

ALCMP_RQ_GCOMMENT Character 40 Comment action option

2-106 APl Guide

2.39 List Components/Where-used

Field Length Description

ALCMP_RQ_GCOPYBACK Character 1 Copyback element action option
(Y/N)

ALCMP_RQ_GSEARCH Character 1 Search map action option (Y/N)

ALCMP_RQ_GOVESIGNO Character 1 Override signout action option
(Y/N)

ALCMP_RQ_GPROGRO Character 8 Processor group name

Character 5 ** Reserved field **

Note: If you code a value of N in the ALCMP_RQ_BLDSCL field, all the
ALCMP_RQ_G fields are ignored. If you code a value of Y, the values
specified in these fields appear in the GENERATE action SCL statements.

2.39.2 ALCMP_RS Response Structure Fields

This response structure defines the layout of the data returned by the API. If you code
a value of Y in the ALCMP_RQ_BLDSCL field, 80 character GENERATE action
SCL statements are returned instead of the data shown below. A variable,
ALCMP_RS_SCLSTMT, defined as an 80 character field, exists to allow you to
reference the SCL statement records.

Field Length Description

ALCMP_RS_RECTYP Character 1 Type of entity this response is:
1 - Footprinted element
2 - Non-footprinted member
3 - Related element
4 - Related member
5 - Related object

6 - Related comment

Chapter 2. API Function Calls 2-107

2.39 List Components/Where-used

Field

Length

Description

ALCMP_RS_LEVEL

Character 2

Possible values are 01, 02 or 03.
Level 1 is always the record that
matches the entity (element,
member, comment or object) you
specified in the request structure.
If occurrences of the requested
entity are found at more than one
location, then multiple sets of
records are returned. The meaning
of the values vary, depending on
the request type (E, M, O or C) and
direction (C or W) you specify.

List component for element - (01)
Element, (02) Component

List where-used for element - (01)
Element, (02) Parent element, (03)
Parent element of level 2 element

List where-used for member - (01)
Member, (02) Parent element

List where-used for comment or
object - (01) Comment/Object, (02)
Parent element

Character 1

** Reserved field **

2.39.2.1 RECTYP 1 or 3 Format

Field

Length

Footprinted Element Data

ALCMP_RS_ELM

Character 10

Element name

ALCMP_RS_TYPE Character 8 Type name

ALCMP_RS_ENV Character 8 Environment name

ALCMP_RS_SYSTEM Character 8 System name

ALCMP_RS_SUBSYS Character 8 Subsystem name

ALCMP_RS_STG_NUM Character 1 Stage number. Possible values are 1
or 2

ALCMP_RS_STG_ID Character 1 Stage id as defined in the

CI1DEFLTS table

ALCMP_RS_STG_NAME

Character 8

Stage name as defined in the
CIDEFLTS table

2-108 API Guide

2.39 List Components/Where-used

Field

Length

Footprinted Element Data

Character 32

** Reserved field **

2.39.2.2 RECTYP 2 or 4 Format

Field

Length

Non-Footprinted Member Data

ALCMP_RS_NFPDSN

Character 44

Non-FP data set name

ALCMP_RS_NFPMBR

Character 10

Non-FP member name

Character 30

** Reserved field **

2.39.2.3 RECTYP 5 or 6 Format

Field

Length

Related Object or Comment Data

ALCMP_RS_RELTEXTL

2 bytes Binary

Length of object name or comment
data

ALCMP_RS_RELTEXT

Character 70

Object or comment data

Character 12

** Reserved field **

Chapter 2. API Function Calls 2-109

2.40 List Data Set

2.40 List Data Set

The list data set API function call extracts information about data sets from the MCF
that satisfies the criteria you define in the ALDSN_RQ request structure. Depending
on the response file DDN (AACTL_LIST_DDN) field value, the first of the last
response structure is placed in your defined response area, ALDSN_RS. Refer to 2.2,
“Control Structure” on page 2-3 for details. This allows you to check the response
quickly if you are looking for a specific data set. The API also writes all responses
generated by your request to an external data set if you specified a file output DD
name in the control structure.

Assembler: ENHALDSN

COBOL: ECHALDSN

2.40.1 ALDSN_RQ Request Structure Fields

Immediately following the header is the data area of the ALDSN_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field Length Description

ALDSN_RQ_RETURN Character 1 F - for return only the first record
that satisfies the request.

A - for return all records that
satisfy the request.

ALDSN_RQ_ENV Character 8 Environment name. This field
cannot contain a wildcard character.

ALDSN_RQ_SYSTEM Character 8 System name. This field cannot
contain a wildcard character.

ALDSN_RQ_STG_ID Character 1 Stage id. This field cannot contain
a wildcard character.

ALDSN_RQ_DSNID Character 2 Data Set id. This field can contain
a wildcard character.

Searching: Map searching is not available for this request. All location values
(Environment, System, and Stage id) must be explicitly specified. The data set id
value may contain a wildcard character.

2-110 API Guide

2.40 List Data Set

2.40.2 ALDSN_RS Response Structure Fields

Immediately following its header is the data area of the ALDSN_RS response
structure. The information contained in the response structure is explained in the

following tables.

Field

Length

Description

ALDSN_RS_SITE

Character 1

Site id

ALDSN_RS_ENV

Character 8

Environment name

ALDSN_RS_SYSTEM

Character 8

System name

ALDSN_RS_STG_NAME

Character 8

Stage name

ALDSN_RS_STG_ID

Character 1

Stage id

ALDSN_RS_STG_NUM

Character 1

Stage number (1/2)

ALDSN_RS_DSNID

Character 2

Data set record id

ALDSN_RS_DSNTY

Character 2

Data set type: PO, PV, LB, EL,
VK

ALDSN_RS_DSN

Character 44

Data set name

ALDSN_RS_UPD_DATE

Zoned Char 8

Record update date YYYYMMDD

ALDSN_RS_UPD_TIME

Zoned Char 8

Record update time HHMMSSTH

ALDSN_RS_UPD_CNT

Zoned Char 8

Record update count

ALDSN_RS_UPD_USER

Character 8

Update user id

Chapter 2. API Function Calls 2-111

2.41 List Directory

2.41 List Directory

The list directory API function call allows you to build either a directory list of a file
or a list of CSECT for one or more members of a load library. Specify a DDN or
DSN along with a member and optional through member name. The API returns a list
of members found in that file, along with any footprint information. Wildcarding is
permitted on the member and through member name fields.

This function supports HFS file structures. No fields in the function call are required
when processing an HFS file structure, but you must specify an initialized copy of this
function as a parameter when calling the API. You must specify the path and file
names in the Request Extension block (ENHAAREB) for this type of request.
Wildcarding is permitted on the file name field.

Assembler: ENHALDIR

COBOL: ECHALDIR

2.41.1 ALDIR_RQ Request Structure Fields

Immediately following the header is the data area of the ALDIR_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field Length Description

ALDIR_RQ_DDN Character 8 File or DD name where
member(s) reside. You must
specify either DDN or DSN,
but not both.

ALDIR_RQ_DSN Character 44 Data set name where member(s)
reside. You must specify either
DDN or DSN, but not both.

ALDIR_RQ_MBR Character 10 Member name. Wildcarding is
permitted.
ALDIR_RQ_MBR_THRU Character 10 Through member name.

Wildcarding is permitted.

2-112 API Guide

2.41 List Directory

Field

Length

Description

ALDIR_RQ_CSECT

Character 1

Request CSECT flag. If
specified, the API builds a list
of CSECTs for the member(s)
of the load library specified.
To activate this feature, code a
value of "Y' in this field.

If you specify this option the
returned count
(AACTL_#RETURNED)
contains the number of
members processed and the
selected count
(AACTL_#SELECTED)
contains the total number of
CSECTs found in the returned
members.

ALDIR_RQ_SUBDIR

Character 1

This option is for HFS
processing. By default you
only receive a list of files that
exist within the directory you
specified. If you want to
include all the sub-directories
along with the files in the list,
code a value of "Y' in this field.
The ALDIR_RS_MODE field
in the response structure
indicates the type associated
with each entry.

Character 2

** Reserved field **

2.41.2 ALDIR_RS Response Structure Fields

This response structure defines the layout of the data returned by the API. The
CSECT field is blank unless you specify the CSECT option in the request structure
and the input file is a load library. Endevor footprint data only appears for members

within Endevor controlled libraries.

Field

Length

Endevor Footprint Data

ALDIR_RS_ENV

Character 8

Environment name

ALDIR_RS_SYSTEM

Character 8

System name

ALDIR_RS_SUBSYS

Character 8

Subsystem name

ALDIR_RS_ELEMENT

Character 10

Element name

Chapter 2. API Function Calls 2-113

2.41 List Directory

Field

Length

Endevor Footprint Data

ALDIR_RS_TYPE

Character 8

Type name

ALDIR_RS_STG_NUM

Character 1

Stage number. Possible values
are 1 or 2.

ALDIR_RS_VVLL

Character 5

Version and level. Format is
VV.LL (01.99).

ALDIR_RS_DATE

Character 7

Footprint date. Format is
DDMMMYY (31JANOI).

ALDIR_RS_TIME

Character 5

Footprint time. Format is
HH:MM (23:59).

ALDIR_RS_SITEID

Character 1

Site id

ALDIR_RS_LD_FLAG

Character 1

Load utility flag. Possible
values are "Y' or blank.

ALDIR_RS_CSECT

Character 8

CSECT name. This field is
blank unless you specify the
CSECT option in the request
structure and the input file is a
load library.

ALDIR_RS_MODE

Character 1

HFS file mode. Used in
conjunction with HFS files.
Indicates if this entry is a
directory name or an HFS file
name. Possible values are:

D - directory
F - file

U - unknown

Character 1

** Reserved field **

ALDIR_RS_MBRL

Binary (2
bytes)

Length of member or HFS file
name. Possible values are
1-255.

ALDIR_RS_MBR

Character 255

Member or HFS file name

Character 3

** Reserved field **

2-114 API Guide

2.42 List Environment

2.42 List Environment

The list environment API function call extracts information about environments in
Endevor that satisfies the criteria you define in the ALENV_RQ request structure.
Depending on the response file DDN (AACTL_LIST_DDN) field value, the first of
the last response structure is placed in your defined response area, ALENV_RS. Refer
to 2.2, “Control Structure” on page 2-3 for details. This allows you to check the
response quickly if you are looking for a specific environment. The API also writes
all responses generated by your request to an external data set if you specified a file
output DD name in the control structure.

Assembler: ENHALENV

COBOL: ECHALENV

2.42.1 ALENV_RQ Request Structure Fields

Immediately following the header is the data area of the ALENV_RQ request
structure. The request structure is where you set your selection criteria. All request
selection fields are explained in the following table.

Field Length Description

ALENV_RQ_PATH Character 1 Mapping path:
L' for Logical
'P' for Physical

ALENV_RQ_RETURN Character 1 'F' for return only the first record
that satisfies the request.

'A" for return all records that satisfy
the request.

ALENV_RQ_SEARCH Character 1 Mapping argument:

'A' for Search All the way up the
map.

'B' for Search Between the two
specified environments.

'N' for No Search.

'E' for Search nExt specified
environment then up the map.

'R' for Search the Range, between
and including the specified
environments.

Chapter 2. API Function Calls 2-115

2.42 List Environment

Field

Length

Description

ALENV_RQ_ENV

Character 8

Environment name. This field
cannot contain a wildcard character.

ALENV_RQ_TOENV

Character 8

To environment name. If specified,
this field cannot contain a wildcard
character. Optional.

Searching: If you specify:

1 'E', 'B', or R' for the ALENV_RQ_SEARCH search argument, you cannot use a
wildcard in the Environment name.

® B, or R' for the ALENV_RQ_SEARCH search argument, you must specify the
To Environment in the ALENV_RQ_TOENYV field. You cannot use a wildcard.

8 The To Environment in the ALENV_RQ_TOENV field, it will be ignored unless

you also specify the 'B' or 'R' search option.

2.42.2 ALENV_RS Response Structure Fields

Immediately following its header is the data area of the ALENV_RS response
structure. The information contained in the response structure is explained in the

following table.

Field

Length

Description

ALENV_RS_SITE

Character 1

Site id

ALENV_RS_ENV

Character 8

Environment id

ALENV_RS_TITLE

Character 40

Description

ALENV_RS_USEC

Character 8

User security name table

ALENV_RS_RSEC

Character 8

Resource security name table

ALENV_RS_SMFSEC

Character 1

SMF Recording - Security. Value Y
for Yes or N for No.

ALENV_RS_SMFACT

Character 1

SMF Recording - Actions. Value Y
for Yes or N for No.

ALENV_RS_SMFENV

Character 1

SMF Recording - Environment.
Value Y for Yes or N for No.

ALENV_RS_DBAVL

Character 1

DB Bridge Available. Value Y for
Yes or N for No.

ALENV_RS_DBACT

Character 1

DB Bridge Active. Value Y for Yes
or N for No.

ALENV_RS_DBOPT1

Character 1

DB Bridge Option 1. Value Y for
Yes or N for No.

2-116 API Guide

2.42 List Environment

Field Length Description

ALENV_RS_DBOPT2 Character 1 DB Bridge Option 2. Value Y for
Yes or N for No.

ALENV_RS _DBOPT3 Character 1 DB Bridge Option 3. Value Y for
Yes or N for No.

ALENV_RS_DBOPT4 Character 1 DB Bridge Option 4. Value Y for
Yes or N for No.

Chapter 2. API Function Calls 2-117

2.43 List Processor Group

2.43 List Processor Group

The list processor group API function call extracts information from the MCF that
satisfies the criteria you define in the ALPGR_RQ request structure about the
processor group. It will also extract any symbolic overrides that have been defined for
any of the group's processors.

A record is produced for each processor within a group. Processor group information
that relates to the whole group is replicated on each processor record. Also, if
overrides exist for any processor, the whole record is replicated with an override value
appended to the record. For example, if a group has two processors defined, and the
first processor has two overrides while the second only has one, three records are
produced:

8 The first record contains the group's information. The first processor information
is followed by the first symbolic override data.

® The second record contains the same group and processor information followed by
the second override data.

B The third record contains the same group information, the second processor
information, followed by the symbolic override data pertaining to the second
processor.

Depending on the response file DDN (AACTL_LIST_DDN) field value, the first of
the last response structure is placed in your defined response area, ALPGR_RS. Refer
to 2.2, “Control Structure” on page 2-3 for details. This allows you to check the
response quickly if you are looking for a specific processor group. The API also
writes all responses generated by your request to an external data set if you specified a
file output DD name in the control structure.

Assembler: ENHALPGR

COBOL: ECHALPGR

2.43.1 ALPGR_RQ Request Structure Fields

Immediately following the header is the data area of the ALPGR_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field Length Description

ALPGR_RQ_RETURN Character 1 'F' for return only the first record
that satisfies the request.

'A' for return all records that satisfy
the request.

2-118 API Guide

2.43 List Processor Group

Field

Length

Description

ALPGR_RQ_ENV

Character 8

Environment name. This field
cannot contain a wildcard character.

ALPGR_RQ_SYSTEM

Character 8

System name. This field cannot
contain a wildcard character.

ALPGR_RQ_TYPE

Character 8

Type name. This field cannot
contain a wildcard character.

ALPGR_RQ_STG_ID

Character 1

Stage id. This field cannot contain
a wildcard character.

ALPGR_RQ_PGRP

Character 8

Processor Group Name. This field
can contain a wildcard character.

Searching: Map searching is not available for this request. All location values
(Environment, System, Type, and Stage id) must be explicitly specified. The processor
group name can contain a wildcard.

2.43.2 ALPGR_RS Response Structure Fields

Immediately following its header is the data area of the ALPGR_RS response
structure. The information contained in the response structure is explained in the

following tables.

Field

Length

Description

ALPGR_RS_SITE

Character 1

Site id

ALPGR_RS_ENV

Character 8

Environment name

ALPGR_RS_SYSTEM

Character 8

System name

ALPGR_RS_TYPE Character 8 Type name
ALPGR_RS_STG_NAME Character 8 Stage name
ALPGR_RS_STG_ID Character 1 Stage id

ALPGR_RS_STG_NUM

Character 1

Stage number (1/2)

ALPGR_RS_PGRP

Character 8

Processor group name

ALPGR_RS_PROTY

Character 4

Processor type:
DEL - for delete processor
GEN - for generate processor

MOVE - for move processor

Chapter 2. API Function Calls 2-119

2.43 List Processor Group

Field

Length

Description

ALPGR_RS_SYM#

ALPGR-RS-SYMNUM
(COBOL)

Zoned Char 4

Symbolic override number. If no
symbolic overrides exist for this
processor, this value will be set
to zero.

ALPGR_RS_UPD_DATE

Zoned Char 8

Record update date
YYYYMMDD

ALPGR_RS_UPD_TIME

Zoned Char 8

Record update time
HHMMSSTH

ALPGR_RS_UPD_USER

Character 8

Update User id

ALPGR_RS_DESC

Character 50

Processor group description

ALPGR_RS_NEXT_PGR

Character 8

Next pathed processor group

ALPGR_RS_PGRTYPE

Character

Output type

ALPGR_RS_PMOVE

Character 1

Processor to use on Move
actions:

G - for Generate

M - for Move

ALPGR_RS_PROFG

Character 1

Foreground Processing flag.
Value Y for Yes and N for No.

ALPGR_RS_PRONME

Character 8

Processor name

ALPGR_RS_PXFER

Character 1

Processor to use on Transfer
actions:

G - for Generate

M - for Move

ALPGR_RS_SYM_LEN

Zoned Char 2

Override symbol length

ALPGR_RS_SYM

Character 8

Override symbol

ALPGR_RS_SVAL_LEN

Zoned Char 4

Override symbol value length

ALPGR_RS_SVAL

Character 256

Override symbol value

2-120 API Guide

2.44 List Site

2.44 List Site

The list site API function call extracts information about sites. Depending on the
response file DDN (AACTL_LIST_DDN) field value, the first of the last response
structure is placed in your defined response area, ALSIT_RS. Refer to 2.2, “Control
Structure” on page 2-3 for details. This allows you to check the response quickly if
you are looking for specific site information. The API also writes this data to an
external data set if you specified a file output DD name in the control structure.

Assembler: ENHALSIT

COBOL: ECHALSIT

2.44.1 ALSIT_RQ Request Structure Fields

The ALSIT_RQ request structure defines your List Site fields, which in this case is
only the Site header. No additional data can be specified.

2.44.2 ALSIT_RS Response Structure Fields

Immediately following the header is the data area of the ALSIT_RS response structure.
The information contained in the response structure is explained in the following table.

Field

Length

Description

ALSIT_RS_NDVRREL

Character 6

Endevor release identifier.

ALSIT_RS_SITEID

Character 1

Site id

ALSIT_RS_SITENAME

Character 50

Site name

ALSIT_RS_DFLTDATE

Character 8

CIDEFLTS assembly date

ALSIT_RS_DFLTTIME

Character 8

CIDEFLTS assembly time

ALSIT_RS_APPRREQD

Character 1

Approvals required

ALSIT_RS_EXITAUTH

Character 8

Authorized library for exits

ALSIT_RS_ELNKXTBL

Character 8

ELink data stream translate table

ALSIT_RS_LINESPP

Zoned Char 2

Lines per page (reports and logs)

ALSIT_RS_MACLIB

Character 44

Endevor installation macro
library

ALSIT_RS_PKGCSEC

Character 1

Perform Security Check at Cast
flag. Value Y for Yes and N for
No.

Chapter 2. API Function Calls 2-121

2.44 List Site

Field

Length

Description

ALSIT_RS_PKGCVAL

Character 1

Component Validation flag
O - for Optional

Y - for required

ALSIT_RS_PKGTSO

Character 1

Package Execution Valid in
Foreground flag. Value Y for
Yes and N for No.

ALSIT_RS_MFMTCCID

Character 1

Mixed Case for CCID flag.
Value Y for Yes and N for No.

ALSIT_RS_MFMTCMNT

Character 1

Mixed Case for Comment flag.
Value Y for Yes and N for No.

ALSIT_RS_MFMTDESC

Character 1

Mixed Case for Description flag.
Value Y for Yes and N for No.

ALSIT_RS_PKGDSN

Character 44

Endevor Package data set name

ALSIT_RS_CCIDVAL

Character 44

Endevor CCID Validation table

ALSIT_RS_MODHLI

Character 8

High Level Qualifier for
DISP=MOD temporary data set
names on processor executions.

ALSIT_RS_ACCSTABL

Character 8

ESI access security table

ALSIT_RS_ACMOPT

Character 1

Endevor ACM Option Available
flag. Value Y for Yes and N for
No.

ALSIT_RS_DB20OPT

Character 1

Endevor DB2 Option Available
flag. Value Y for Yes and N for
No.

ALSIT_RS_ELKOPT

Character 1

Endevor ELink Option Available
flag. Value Y for Yes and N for
No.

ALSIT_RS_ESIOPT

Character 1

Endevor ESI Option Available
flag. Value Y for Yes and N for
No.

ALSIT_RS_INFOPT

Character 1

Endevor INFOMAN Option
Available flag. Value Y for Yes
and N for No.

ALSIT_RS_JRNLGRP

Character 14

Point-in-time recovery journal
group.

ALSIT_RS_LPVOPT

Character 1

Endevor LIB/PNV Option
Available flag. Value Y for Yes
and N for No.

2-122 API Guide

2.44 List Site

Field

Length

Description

ALSIT_RS_PDMOPT

Character 1

Endevor PDM Option Available
flag. Value Y for Yes and N for
No.

ALSIT_RS_PRCOPT

Character 1

Endevor Processor Option
Available. Value Y for Yes and
N for No.

ALSIT_RS_QEDOPT

Character 1

Endevor Quick Edit Option
Available flag. Value Y for Yes
and N for No.

ALSIT_RS_SOFETCH

Character 1

Signout Source on Fetch
(Retrieve Action) Option flag.
Value Y for Yes and N for No.

ALSIT_RS_GNIPSOUT

Character 1

Signout on Generate in Place
Action flag. Value Y for Yes and
N for No.

ALSIT_RS_SMFREC#

ALSIT-RS-SMFRECNUM
(COBOL)

Zoned Char 3

SMF record number

ALSIT_RS_RACFUID

Character 8

Endevor alternate RACF userid

ALSIT_RS_RACFGRP

Character 8

Endevor alternate RACF group

ALSIT_RS_RACFPWD

Character 8

Endevor alternate RACF
password

ALSIT_RS_LIBENV

Character 2

CA-Panvalet/CA-Librarian
(PV/LB) environment

ALSIT_RS_LIBPGM

Character 8

CA-Librarian interface program
name

ALSIT_RS_RJCLROOT

Character 4

Package ship remote JCL root
model member

ALSIT_RS_SPFEDIT

Character 8

Reserve QNAME for non-load
libraries

ALSIT_RS_SYSIEWLP

Character 8

Reserve QNAME for load
libraries

ALSIT_RS_TSOE

Character 1

TSO-E Installed flag. Value Y
for Yes and N for No.

ALSIT_RS_WRKUNIT

Character 8

Esoteric non-vio work unit name.

ALSIT_RS_WRKVOL

Character 6

Work unit VOLSER

Chapter 2. API Function Calls 2-123

2.44 List Site

Field

Length

Description

ALSIT_RS_BATCHID

Zoned Char 1

Batch Id flag:
0 - Userid taken from jobname

1 - Userid taken from user=
parameter

2 - Userid taken from user=
parameter, but if blank, take
from jobname

ALSIT_RS_UIDLOCO

Zoned Char 1

Userid offset in jobcard

ALSIT_RS_UIDLOCL

Zoned Char 1

Userid length in jobname

ALSIT_RS_VIOUNIT

Character 8

Esoteric VIO unit name

2-124 API| Guide

2.45 List Stage

2.45 List Stage

The list stage API function call extracts information about stages in Endevor that
satisfies the criteria you define in the ALSTG_RQ request structure. Depending on the
response file DDN (AACTL_LIST_DDN) field value, the first of the last response
structure is placed in your defined response area, ALSTG_RS. Refer to 2.2, “Control
Structure” on page 2-3 for details. This allows you to check the response quickly if
you are looking for a specific stage. The API also writes all responses generated by
your request to an external data set if you specified a file output DD name in the
control structure.

Assembler: ENHALSTG

COBOL: ECHALSTG

2.45.1 ALSTG_RQ Request Structure Fields

Immediately following the header is the data area of the ALSTG_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field Length Description

ALSTG_RQ_PATH Character 1 Mapping path:
L' for Logical
'P' for Physical

ALSTG_RQ_RETURN Character 1 'F' for return only the first record
that satisfies the request.

'A'" for return All

ALSTG_RQ_SEARCH Character 1 Mapping argument:

'A" for Search All the way up the
map.

'B' for Search Between the two
specified environments and stages.

'N' for No Search.

'E' for Search nExt specified
environment/stage then up the map.

'R' for Search the Range, between
and including the specified
environments and stages.

ALSTG_RQ_ENV Character 8 Environment name. This field cannot
contain a wildcard character.

Chapter 2. API Function Calls 2-125

2.45 List Stage

2.45.2 ALSTG_RS Response Structure Fields

Field Length Description

ALSTG_RQ_TOENV Character 8 To Environment name. If specified,
this field cannot contain a wildcard
character. Optional.

ALSTG_RQ_STG_ID Character 1 Stage id. This field can be a

wildcard character.

ALSTG_RQ_TOSTG_ID Character 1

To Stage id. If specified, this field
cannot contain a wildcard character.
Optional.

Searching: If you specify 'B', or 'R' for the ALSTG_RQ_SEARCH search
argument, you must specify the To Environment in the ALSTG_RQ_TOENYV field and
the To Stage Id in the ALSTG_RQ_TOSTG field. You cannot use a wildcard. In
addition, these fields will be ignored unless the 'B' or 'R’ search field is also specified.

Immediately following its header is the data area of the ALSTG_RS response
structure. The information contained in the response structure is explained in the

following table.

Field Length Description
ALSTG_RS_SITE Character 1 Site id
ALSTG_RS_ENV Character 8 Environment name
ALSTG_RS_STG_NAME Character 8 Stage name
ALSTG_RS_STG_ID Character 1 Stage id
ALSTG_RS_STG_NUM Character 1 Stage number
ALSTG_RS_TITLE Character 20 Title
ALSTG_RS_DSN Character 44 MCEF data set name

2-126 APl Guide

2.46 List Subsystem

2.46 List Subsystem

The list subsystem API function call extracts information about subsystems from the
MCEF that satisfies the criteria you define in the ALSBS_RQ request structure.
Depending on the response file DDN (AACTL_LIST_DDN) field value, the first of
the last response structure is placed in your defined response area, ALSBS_RS. Refer
to 2.2, “Control Structure” on page 2-3 for details. This allows you to check the
response quickly if you are looking for a specific subsystem. The API also writes all
responses generated by your request to an external data set if you specified a file
output DD name in the control structure.

Assembler: ENHALSBS

COBOL: ECHALSBS

2.46.1 ALSBS_RQ Request Structure Fields

Immediately following the header is the data area of the ALSBS_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table.

Field Length Description

ALSBS_RQ_PATH Character 1 Mapping path:
L' for Logical
'P' for Physical

ALSBS_RQ_RETURN Character 1 'F' for return only the first record
that satisfies the request.

'A" for return all records that satisfy
the request.

ALSBS_RQ_SEARCH Character 1 Mapping argument:

'A' for Search All the way up the
map.

'B' for Search Between the two
specified environments and stages.

'N' for No Search.

'E' for Search nExt specified
environment/stage then up the map.

'R' for Search the Range, between
and including the specified
environments and stages.

Chapter 2. API Function Calls 2-127

2.46 List Subsystem

Field Length Description

ALSBS_RQ_ENV Character 8 Environment name. This field
cannot contain a wildcard character.

ALSBS_RQ_TOENV Character 8 To Environment name. If
specified, this field cannot contain
a wildcard character. Optional.

ALSBS_RQ_STG_ID Character 1 Stage id. This field can contain a
wildcard character.

ALSBS_RQ_TOSTG_ID Character 1 To Stage id. If specified, this field
cannot contain a wildcard character.
Optional.

ALSBS_RQ_SYSTEM Character 8 System name. This field can

contain a wildcard character.

ALSBS_RQ_SUBSYS Character 8 Subsystem name. This field can
contain a wildcard character.

Searching: If you specify 'B', or 'R’ for the ALSBS_RQ_SEARCH search argument,
you must specify the To Environment in the ALSBS_RQ_TOENYV field and the To
Stage Id in the ALSBS_RQ_TOSTG_ID field. You cannot use a wildcard. In
addition, these fields will be ignored unless you also specify the 'B' or 'R' search field.

2.46.2 ALSBS_RS Response Structure Fields

Immediately following its header is the data area of the ALSBS_RS response structure.
The information contained in the response structure is explained in the following table.

Field Length Description
ALSBS_RS_SITE Character 1 Site id

ALSBS_RS_ENV Character 8 Environment name
ALSBS_RS_SYSTEM Character 8 System name
ALSBS_RS_SUBSYS Character 8 Subsystem name
ALSBS_RS_STG_NAME Character 8 Stage name
ALSBS_RS_STG_ID Character 1 Stage id
ALSBS_RS_STG_REL Zoned Char 4 Relative mapped stage number
ALSBS_RS_UPD_CNT Zoned Char 8 Record update count
ALSBS_RS_UPD_DATE Zoned Char 8 Update date YYYYMMDD
ALSBS_RS_UPD_TIME Zoned Char 8 Update time HHMMSSTH
ALSBS_RS_UPD_USER Character 8 Update user id

2-128 API Guide

2.46 List Subsystem

Field Length Description
ALSBS_RS_TITLE Character 50 Subsystem title
ALSBS_RS_NXT_SBS Character 8 Next subsystem name in path
ALSBS_RS_FMID Zoned Char 5 Record created release id

Chapter 2. API Function Calls 2-129

2.47 List System

2.47 List System

The list system API function call extracts information about systems from MCF files
that satisfies the criteria you define in the ALSYS_RQ request structure. Depending
on the response file DDN (AACTL_LIST_DDN) field value, the first of the last
response structure is placed in your defined response area, ALSYS_RS. Refer to 2.2,
“Control Structure” on page 2-3 for details. This allows you to check the response
quickly if you are looking for a specific system. The API also writes all responses
generated by your request to an external data set if you specified a file output DD
name in the control structure.

Assembler: ENHALSYS

COBOL: ECHALSYS

2.47.1 ALSYS_RQ Request Structure Fields

Immediately following the header is the data area of the ALSYS_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table:

Field Length Description

ALSYS_RQ_PATH Character 1 Mapping path:
L' for Logical
'P' for Physical

ALSYS_RQ_RETURN Character 1 'F' for return only the first record
that satisfies the request.

'A' for return all records that
satisfy the request.

ALSYS_RQ_SEARCH Character 1 Mapping argument:

'A" for Search All the way up the
map.

'B' for Search Between the two
specified environments and stages.

'N' for No Search.

'E' for Search nExt specified
environment/stage then up the
map.

'R' for Search the Range, between
and including the specified
environments and stages.

2-130 API Guide

2.47 List System

Field

Length

Description

ALSYS_RQ_ENV

Character 8

Environment name. You cannot
use a wildcard character in this
field.

ALSYS_RQ_TOENV

Character 8

To Environment name. If
specified, it cannot contain a
wildcard character. Optional.

ALSYS_RQ_STG_ID

Character 1

Stage id. You can use a wildcard
character in this field.

ALSYS_RQ_TOSTG_ID

Character 1

To Stage id. If specified, it cannot
contain a wildcard character.
Optional.

ALSYS_RQ_SYSTEM

Character 8

System name. You can use a
wildcard character in this field.

Searching: If you specify 'B', or 'R’ for the ALSYS_RQ_SEARCH search argument,
you must specify the To Environment in the ALSYS_RQ_TOENYV field and the To
Stage Id in the ALSYS_RQ_TOSTG_ID field. You cannot use a wildcard. In
addition, these fields will be ignored unless you also specify the 'B' or 'R’ search field.

2.47.2 ALSYS_RS Response Structure Fields

Immediately following its header is the data area of the ALSYS_RS response structure.
The information contained in the response structure is explained in the following table.

Field

Length

Description

ALSYS_RS_SITE

Character 1

Site id

ALSYS_RS_ENV

Character 8

Environment name

ALSYS_RS_SYSTEM

Character 8

System name

ALSYS_RS_STG_NAME

Character 8

Stage name

ALSYS_RS_STG_ID

Character 1

Stage id

ALSYS_RS_STG_REL

Zoned Char 4

Relative mapped stage number

ALSYS_RS_UPD_CNT

Zoned Char 8

Record update count

ALSYS_RS_UPD_DATE

Zoned Char 8

Update date YYYYMMDD

ALSYS_RS_UPD_TIME

Zoned Char 8

Update time HHMMSSTH

ALSYS_RS_UPD_USER

Character 8

Update user id

ALSYS_RS_TITLE

Character 50

System title

ALSYS_RS_NXT_SYS

Character 8

Next system name in path

Chapter 2. API Function Calls 2-131

2.47 List System

Field Length Description
ALSYS_RS_LOADLIB Character 44 Processor load library
ALSYS_RS_LISTING Character 44 Processor listing library

ALSYS_RS_COMMENT

Character 1

Comment Required flag. Value is
Y for Yes or No for No.

ALSYS_RS_CCID

Character 1

CCID Required flag. Value is Y
for Yes or No for No.

ALSYS_RS_SISO1

Character 1

Signout Required flag. Value is Y
for Yes or No for No.

ALSYS_RS_SISO2

Character 1

Validate Retrieve Dataset flag.
Value is Y for Yes or No for No.

ALSYS_RS_JUMP

Character 1

Jump Option Required flag. Value
is Y for Yes or No for No.

ALSYS_RS_BAK_DATE Zoned Char 8 Backup date YYYYMMDD
ALSYS_RS_BAK_TIME Zoned Char 8 Backup Time HHMMSSTH
ALSYS_RS_FMID Zoned Char 5 Record created release id

2-132 API Guide

2.48 List Type

2.48 List Type

The list type API function call extracts information about types from the MCF that
satisfies the criteria you define in the ALTYP_RQ request structure. Depending on the
response file DDN (AACTL_LIST_DDN) field value, the first of the last response
structure is placed in your defined response area, ALTYP_RS. Refer to 2.2, “Control
Structure” on page 2-3 for details. This allows you to check the response quickly if
you are looking for a specific type. The API also writes all responses generated by
your request to an external data set if you specified a file output DD name in the
control structure.

Assembler: ENHALTYP

COBOL: ECHALTYP

2.48.1 ALTYP_RQ Request Structure Fields

Immediately following the header is the data area of the ALTYP_RQ request structure.
The request structure is where you set your selection criteria. All request selection
fields are explained in the following table:

Field Length Description

ALTYP_RQ_PATH Character 1 Mapping path:
L' for Logical
'P' for Physical

ALTYP_RQ_RETURN Character 1 'F' for return only the first record
that satisfies the request.

'A' for return all records that
satisfy the request.

ALTYP_RQ_SEARCH Character 1 Mapping argument:

'A' for Search All the way up the
map.

'B' for Search Between the two
specified environments and stages.

'N' for No Search

'E' for Search nExt specified
environment/stage then up the
map.

'R' for Search the Range, between
and including the specified
environments and stages.

Chapter 2. API Function Calls 2-133

2.48 List Type

2.48.2 ALTYP_RS Response Structure Fields

Field

Length

Description

ALTYP_RQ_ENV

Character 8

Environment name. You cannot
use a wildcard character in this
field.

ALTYP_RQ_TOENV

Character 8

To Environment name. If
specified, this field cannot contain
a wildcard character. Optional.

ALTYP_RQ_STG_ID

Character 1

Stage id. This field can contain a
wildcard character.

ALTYP_RQ_TOSTG_ID

Character 1

To Stage id. If specified, this
field cannot contain a wildcard
character. Optional.

ALTYP_RQ_SYSTEM

Character 8

System name. This field can
contain a wildcard character.

ALTYP_RQ_TYPE

Character 8

Type name. This field can contain
a wildcard character.

Searching: If you specify 'B', or 'R' for the ALTYP_RQ_SEARCH search

argument, you must specify the To Environment in the ALTYP_RQ_TOENYV field and
the To Stage Id in the ALTYP_RQ_TOSTG_ID field. You cannot use a wildcard. In
addition, these fields will be ignored unless you also specify the 'B' or 'R' search field.

Immediately following its header is the data area of the ALTYP_RS response
structure. The information contained in the response structure is explained in the

following table.

Field

Length

Description

ALTYP_RS_SITE

Character 1

Site name

ALTYP_RS_ENV

Character 8

Environment name

ALTYP_RS_SYSTEM

Character 8

System name

ALTYP_RS_TYPE

Character 8

Type name

ALTYP_RS_TYPENBR

Character 2

Type number id

ALTYP_RS_STG_NAME

Character 8

Stage name

ALTYP_RS_STG_ID

Character 1

Stage id

ALTYP_RS_STG_NUM

Character 1

Stage number

ALTYP_RS_STG_REL

Zoned Char 4

Relative mapped stage number

ALTYP_RS_UPD_CNT

Zoned Char 8

Record update count

2-134 API Guide

2.48 List Type

Field

Length

Description

ALTYP_RS_UPD_DATE

Zoned Char 8

Update date YYYYMMDD

ALTYP_RS_UPD_TIME

Zoned Char 8

Update time HHMMSSTH

ALTYP_RS_UPD_USER

Character 8

Update user id

ALTYP_RS_FMID

Zoned Char 5

Record created release id

ALTYP_RS_NXT_TYP

Character 8

Next type name in path

ALTYP_RS_DESC

Character 50

Type description

ALTYP_RS_DPGRPNME

Character 8

Default processor group name

ALTYP_RS_FILEEXT

Character 8

PC extension

ALTYP_RS_HOOP

Character 1

Home OPSYS: M-z/OS and
0S/390 W-Workstation

ALTYP RS _EXTLANG Character 8 Language
ALTYP RS _INTLANG Character 8 PV/LB Language
ALTYP_RS_REPCT Character 2 Regression percent
ALTYP_RS_RESEV Character 1 Regression severity
ALTYP_RS_SLEN Character 5 Source length
ALTYP_RS_CMPFR Character 5 Compare from
ALTYP_RS_CMPTO Character 5 Compare to
ALTYP_RS_AUCON Character 1 Auto Consolidate flag. Value Y
for Yes and N for No.
ALTYP_RS_AULTC Character 3 Consolidate level
ALTYP_RS_AUCLE Character 3 Auto consolidate level
ALTYP_RS_CAUCO Character 1 Component Auto Consolidate

flag. Value Y for Yes and N for
No.

ALTYP_RS_CULTC

Character 3

Component consolidate level

ALTYP_RS_CAUCL

Character 3

Component auto consolidate
level

ALTYP_RS_SOEXI

Character 1

Expand include in source output
library. Value Y for Yes and N
for No.

ALTYP_RS_DELTY

Character 1

F - Forward element delta

R - Reverse element delta

Chapter 2. API Function Calls 2-135

2.48 List Type

Field

Length

Description

ALTYP_RS_CDELTY

Character 1

F - Forward component delta

R - Reverse component delta

ALTYP_RS_CMPBA

Character 1

Compress Base flag. Value Y for
Yes and N for No.

ALTYP_RS_NNCR

Character 1

Not encrypted element name.
Value Y for Yes and N for No.

ALTYP_RS_ODSTYP

Character 2

Source output data set type:

PO /PV /LB

ALTYP_RS_ODSNME

Character 44

Source output data set name

ALTYP_RS_IDSTYP

Character 2

Include data set type:
PO /PV /LB

ALTYP_RS_IDSNME

Character 44

Include data set name

ALTYP_RS_BDSTYP

Character 2

Base data set type:
PO/PV /LB /EL/ VK

ALTYP_RS_BDSNME

Character 44

Base data set name

ALTYP_RS_UDSTYP

Character 2

Update data set type:
PO/PV /LB /EL/ VK

ALTYP_RS_UDSNME

Character 44

Update data set name

2-136 APl Guide

Chapter 3. API Return Codes and Reason Codes

Chapter 3. API Return Codes and Reason Codes 3-1

3.1 Overview

3.1 Overview

The Endevor API uses return codes and reason codes to report on the status of your
API function calls. The return code is presented back to the user in two ways, through
register 15 and through the AACTL_RTNCODE field.

The following lists all possible return codes that may result after an Endevor API

function call.

Return Code

Description

00 I - Informational. Processing concluded normally. Message is
issued for informational purposes only.

04 W - Warning. An error was encountered which was not serious
enough to terminate processing.

08 C - Caution. An error was encountered which may prevent further
processing.

12 E - Error. An error was encountered that terminated processing of
the current action but allowed Endevor to continue with the next
action request.

16 S - Severe. A severe error was encountered that prevented Endevor
from completing the requested action. Processing terminates
immediately. This category includes internal, system, and I/O errors.

20 F - Fatal. No further processing is possible.

3-2 API Guide

3.2 Return Code and Reason Code Descriptions

3.2 Return Code and Reason Code Descriptions

Each return code has a reason code associated with it. Below lists all possible reason
codes that may accompany a return code. The reason code is presented back to the
user via register 0 and through the AACTL_REASON field.

RC RE Problem Explanation
00 000 No problems Request ended successfully.
04 001 Environment not found Occurs on ALENV function calls. An IMR error message is

associated with this error. The message can be found in the
output message file specified through the control structure. If
the ENSTRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROO1E).

04 002 Stage not found Occurs on ALSTG function calls. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the EN$TRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROO1E).

04 003 System not found Occurs on ALSYS function calls. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the EN$TRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROOSE).

04 004 Subsystem not found Occurs on ALSBS function calls. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the EN$TRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROOSE).

Chapter 3. API Return Codes and Reason Codes 3-3

3.2 Return Code and Reason Code Descriptions

RC RE Problem Explanation

04 005 Type not found Occurs on ALTYP function calls. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the ENSTRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGRO13E).

04 006 Element not found Occurs on ALELM function calls. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the EN$TRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROQO9E).

04 007 Processor group not Occurs on an ALPGR function call. An IMR error message is
found associated with this error. The message can be found in the
output message file specified through the control structure. If
the ENSTRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGRO13E).

04 008 Data set not found Occurs on an ALDSN function call. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the ENSTRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROOSE).

04 009 Approver group not Occurs on an ALAGR function call. An IMR error message is
found associated with this error. The message can be found in the
output message file specified through the control structure. If
the ENSTRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGROI18E).

3-4 API| Guide

3.2 Return Code and Reason Code Descriptions

RC

RE

Problem

Explanation

04

010

Approver junction not
found

Occurs on an ALAG]J function call. An IMR error message is
associated with this error. The message can be found in the
output message file specified through the control structure. If
the EN$TRAPI DD statement is included, the message also
appears there.

The high message id field in the control structure: The IMR
message code (for example IMGRO19E).

04

011

No packages found

No packages were found to match the package id specified.
Either no package exists with that package id or security rules
eliminated that package from being selected.

04

012

No packages selected

No packages were found to match the selection criteria. Either
the selection criteria specified in the request block or a package
user exit caused all the packages to be eliminated. If you are
unable to determine why no packages were selected, you can
activate the ENSTRAPI trace to give you the reason each
package was eliminated. Please note, output is produced for
each package returned.

04

13

Requested version/level

not found

An element function call was issued with a version or level that
does not exist or an illogical element function call was issued
(for example, changes of vv.11 1.00).

The high message id field in the control structure: APO4013W.

04

14

No component data
exists

An element component function call was issued. The element
exists, but there is no component data.

The high message id field in the control structure: AP0O4014W.

04

15

No changes exists

No changes exist for the element or component list you
specified.

08

001

No found condition
detected

A request was made to perform a package list action against an
entity that does not exist. Refer to the E-level messages for
detailed information.

12

001

Reserved field error

A request structure contains data within one of its reserved
fields. The only valid character is a blank. An error message
is written out to the file reference by the BSTERR DD
statement. The message contains more information concerning
the error.

The high message id field in the control structure: AP12001E.

Chapter 3. API Return Codes and Reason Codes 3-5

3.2 Return Code and Reason Code Descriptions

RC

RE

Problem

Explanation

12

002

Field value error

A request structure contains invalid data within one of its fields.
An error message is written out to the file reference by the
BSTERR DD statement. The message contains more
information concerning the error.

The high message id field in the control structure: AP12002E.

12

003

$IMR error

An IMR error occurred while processing an extract function
call. The message associated with this error can be found in
the output message file which was specified through the control
structure. If the EN$STRAPI DD statement was included, the
message also appears there.

The high message id field in the control structure: The IMR
message code

12

004

File validation error

A validation error was detected on a response file by
CI1SSDVLD. An API message also with the Endevor
validation error message is written out to the trace data set
(ENS$TRAPI), if specified in the JCL stream. A WTO message
is issued for the Endevor validation error.

The high message id field in the control structure: AP12004E.

12

005

File RECFM error

An unsupported RECFM of 'U' was used on a response file
(either the message file or a list/extract file). A WTO message
is issued and if the ENSTRAPI DD statement was included, the
message also appears there.

The high message id field in the control structure: AP12005E.

12

006

Response file I/O error

An I/O error occurred while writing a record to the response
file. An API message is written to the trace file, ENSTRAPI, if
specified. If the user has a message response file, the actual
Endevor error message is written there.

The high message id field in the control structure: AP12006E.

12

007

Message file I/O error

An I/O error occurred while writing a record to the message
file. An API message is written to the trace file, EN$TRAPI, if
specified.

The high message id field in the control structure: AP12007E.

3-6 API Guide

3.2 Return Code and Reason Code Descriptions

RC

RE

Problem

Explanation

12

008

$SMR error

A $SMR error occurred while processing an extract function
call. The message associated with this error can be found in
the output message file which was specified through the control
structure. If the ENSTRAPI DD statement was included, the
message also appears there.

The high message id field in the control structure: The SMR
message code

12

009

Extract file I/O error

An 1I/O error occurred while writing a record to the output
extract file. An API message is written to the trace file,
ENSTRAPI, if specified. If the user has a message response
file, the actual Endevor error message is written there.

The high message id field in the control structure: AP12009E

12

010

Storage unavailable

Storage was unavailable. Increase the region size and try again.
An error message is written out to the file reference by the
BSTERR DD statement. The message contains more
information concerning the error.

The high message id field in the control structure: AP12010E.

12

012

Request failed by
package exit 7

A user defined package exit 7 caused this request to terminate.

12

013

Invalid status for this
request

The status of this package is not in the correct state required to
perform this action. For example, a package must be IN-EDIT
status in order to cast it or in APPROVED status in order to
execute the package. IN-EXEC and EXECUTE status are also
permitted for the execute action if the package is in a failed
state. See the detailed error message for a list of value statuses
for the action you are attempting to perform.

12

014

Endevor package
processing detected an
error condition

Refer to the E-level PKMR message in the message file for
detailed information. Most likely, the requested package does
not exist, or an attempt to create an existing record occurred.
For the EXECUTE action, refer to the CIEXMSGS file for
detailed error information. If the package is an enterprise
package, an action restriction may have been detected.

12

015

Unable to allocate the
BSTIPTO1 file

Unable to allocate the BSTIPTO1 file. This temporary data set
is necessary to execution a package. This is an internal error
condition. One of the allocation parameters specified is not
valid at your site. Review the E-level messages in the message
file for detailed information.

Chapter 3. API Return Codes and Reason Codes 3-7

3.2 Return Code and Reason Code Descriptions

RC RE Problem Explanation

12 016 An enterprise A request was made to associate an enterprise correlation with
correlation exists an Endevor package. A relationship already exists and only

one relationship is permitted. For a RESET action, this action
is not allowed if a enterprise correlation exists.

12 017 No enterprise A request was made to modify or delete an enterprise
correlation records are correlation associated with an Endevor package. No enterprise
associated with this correlations are associated with this package.
package

12 019 Batch package error Errors were detected by the package facility. This is usually an
detected allocation error related to one of the following:

® The IMPORT SCL data set.

® The import DD statement was not specified in the JCL.

® The import data set or member specified does not exist.
Review the CIMSGSI file for details.

12 020 SCL allocation error The Endevor API allocates a temporary file to hold SCL
statements. The allocation of this file failed. Review the
message file for details.

The high message id field in the control structure: AP16001S.

12 021 ACM error The ACMQ facility detected an error when attempting to
retrieve component data.

Review the e-level messages for detailed information.

16 001 AACTL_SHUTDOWN Invalid characters given. You must use (Y)es, (N)o or leave
the field blank.

16 002 AACTL_MSG_DDN is The message file's DD name was not allocated. Make sure that

invalid the DD statement is specified in the JCL stream. No error
message is produced.
The high message id field in the control structure: AP16002S.

16 003 Too many request ENASNDVR was presented with a multiple request structure.
structures Only one request may be presented to the interface. No error

message is produced.
The high message id field in the control structure: AP16003S.

16 004 No request structure ENASNDVR was called without a request structure. No error

message is produced.

The high message id field in the control structure: AP16004S.

3-8 API Guide

3.2 Return Code and Reason Code Descriptions

RC RE Problem Explanation
16 005 Too many response ENASNDVR was presented with a multiple response structure.
structures Only one response may be presented to the interface. No error
message is produced.
The high message id field in the control structure: AP16005S.

16 006 No response structure ENASNDVR was called without a response structure. No error
message is produced.

The high message id field in the control structure: AP16006S.

16 007 Request not response ENASNDVR was presented with a response structure that does
not correspond to the request structure. No error message is
produced.

The high message id field in the control structure: AP16007S.

16 008 AACTL_LIST_DDN is The response file's DD name was not allocated. Make sure that

invalid the DD statement is specified in the JCL stream. No error
message is produced.
The high message id field in the control structure: API6008S.

16 009 C1BMINIT failed Endevor initialization failed - CIBMINIT. An error message is
written out to the file reference by the BSTERR DD statement.
The message contains more information concerning the error.
The API server terminates.

16 012 A severe error was Check the JES log for file related problems. Most likely,

detected when Endevor was unable to allocate the CIEXMSGS file required
attempting to execute a for the package execution messages due to a missing DD
package statement or file attributes.

16 013 Invalid REB id The id associated with the request extension block is invalid.
Check the header of the AAREB block to ensure it contains the
proper values.

16 014 Multiple AAREB The API expects one and only one AAREB block per request.

blocks encountered Multiple AAREB blocks exist.

16 015 AAREB block not The AAREB block is only allowed for actions that support long

allowed names.

16 016 One the AACTL block If only the AACTL block is specified, the shutdown flag must

was found and be Y.
shutdown flag is not Y
16 017 SCL write error Unable to write the SCL to the temporary file. Internal error.

Chapter 3. API Return Codes and Reason Codes 3-9

3.2 Return Code and Reason Code Descriptions

RC

RE

Problem

Explanation

20

001

Control structure
eye-catcher is invalid

ENASNDVR was presented with a control structure which does
not have a valid eye-catcher string. The control structure return
and reason codes will not be set. The codes will be returned
through register 15 and O respectfully. The control structure
cannot be used to return the codes since its structure is
damaged.

20

002

Control structure id is
invalid

ENASNDVR was presented with a control structure which has
an invalid control structure id. The control structure return and
reason codes will not be set. The codes will be returned through
register 15 and 0 respectfully. The control structure cannot be
used to return the codes since its structure is damaged.

20

003

Control structure
version number is
invalid

ENASNDVR was presented with a control structure which does
not have a valid version number. The control structure return
and reason codes will not be set. The codes will be returned
through register 15 and O respectfully. The control structure
cannot be used to return the codes since its structure is
damaged.

20

004

Control structure length
is invalid

ENASNDVR was presented with a control structure which has
an invalid control structure length value. The control structure
return and reason codes will not be set. The codes will be
returned through register 15 and O respectfully. The control
structure cannot be used to return the codes since its structure is
damaged.

20

005

ROLLIST error

Internal error: ROLLIST error. The ROLFSPEC is not valid.
An API message is written to the BSTAPI DD file.

The high message id field in the control structure: AP20005S.

20

006

ROLFFUNC error

Internal error: ROLLIST error. The ROLFFUNC is not valid.
An API message is written to the BSTAPI DD file.

The high message id field in the control structure: AP20006S.

20

007

Type not in ROLLIST

Internal error: ROLLIST error. Type not found in ROL-LIST.
An API message is written to the BSTAPI DD file.

The high message id field in the control structure: AP20007S.

20

008

Invalid type in
ROLLIST

Internal error: ROLLIST error. Invalid type found in
ROL-LIST. An API message is written to the BSTAPI DD
file.

The high message id field in the control structure: AP20008S.

3-10 API Guide

3.2 Return Code and Reason Code Descriptions

RC

RE

Problem

Explanation

20

009

$PINIT failed

$PINIT failure during an API function call. An API message is
written to the BSTAPI DD file.

The high message id field in the control structure: AP20009S.

20

010

REQMSG not in
ROLLIST

Internal error: ROLLIST error. OTREQMSG not found in
ROL-LIST. An API message is written to the BSTAPI DD
file.

The high message id field in the control structure: AP20010S.

20

011

$PGET failed

$PGET failure during an API function call. An API message is
written to the BSTAPI DD file.

The high message id field in the control structure: AP20011S.

20

012

$PSEND failed

$PSEND failure during an API function call. An API message
is written to the BSTAPI DD file.

The high message id field in the control structure: AP20012S.

20

013

$BGETSTG for $API
failed

Storage could not be obtained. An API message is written to
the BSTAPI DD file.

The high message id field in the control structure: AP20013S.

20

014

$BATTACH failed

Attach failure. An API message is written to the BSTAPI DD
file.

The high message id field in the control structure: AP20014S.

20

015

$PWAIT failed

$PWAIT failure during an API function call. An API message
is written to the BSTAPI DD file.

The high message id field in the control structure: AP20015S.

20

016

$PRECV failed

$PRECYV failure during an API function call. An API message
is written to the BSTAPI DD file.

The high message id field in the control structure: AP20016S.

20

017

$PFREE failed

$PFREE failure during an API function call. An API message
is written to the BSTAPI DD file.

The high message id field in the control structure: AP20017S.

20

018

Internal message area is

too small

Internal error. Storage area within the ENASNDVR interface
program is too small to construct the message request.

The high message id field in the control structure: AP20018S.

Chapter 3. API Return Codes and Reason Codes 3-11

3.2 Return Code and Reason Code Descriptions

RC RE Problem Explanation

20 019 Structure cross check Internal error. The structure pointers in the message request
does not point to the correct structure headers that are contained
in the message request. An API message is written to the
BSTAPI DD file.

The high message id field in the control structure: AP20019S.

20 020 AAMSG structure Internal error. The AAMSG structure list (message request) is

improper improper. The pointer list is not an even multiple. An API
message is written to the BSTAPI DD file.
The high message id field in the control structure: AP20020S.

20 021 AAMSG structure not Internal error. The AAMSG structure list does not contain an

found entry for the structure returned by the API server. An API
message is written to the BSTAPI DD file.
The high message id field in the control structure: AP200218S.

20 022 P2PMSG structure Internal error. The P-to-P structure sent by the API server is

improper improper. The total structure size within the AAMSG did not
agree with the P-to-P structure. An API message is written to
the BSTAPI DD file.
The high message id field in the control structure: AP20022S.

20 023 ENAPIMGR parameter Internal error. The API manager received its parameter list

length error with an invalid length. An API message is written to the
BSTERR DD file. The API server terminates.
20 024 ENAPIMGR parameter Internal error. The API manager expected to receive a
EYE error parameter list that maps to SAAPRM. The parameter it
received did not contain the identifier string of 'SAAPRM'. An
API message is written to the BSTERR DD file. The API
server terminates.

20 025 $PHDL failed Internal error. $PHDL failure during an API server
initialization. An API message is written to the BSTERR DD
file. The API server terminates.

20 026 Invalid request id Not used

20 027 AAMSG structure EYE Internal error. The API received an invalid message structure

invalid which did not conform to its expected ENHAAMSG layout.
An API message is written to the BSTERR DD file. The
server waits for another message request.

20 028 No control structure in The API server received a request but the control structure was

AAMSG

not found after the message structure AAMSG. An API
message is written to the BSTERR DD file. The server waits
for another message request.

3-12 API Guide

3.2 Return Code and Reason Code Descriptions

RC RE Problem Explanation
20 029 Control structure is The API server received a request which had an invalid control
invalid structure. An API message is written to the BSTERR DD file.
The server waits for another message request.
20 030 Structure lengths do not The API server expects to receive a message control request
add up with four structures: AAMSG, AACTL, request, and response

structure. During the validation process the total lengths of
these structures did not agree with the value stored in the
message structure. An API message is written to the BSTERR
DD file. The server waits for another message request.

20 031 Request structure The request structure within a message request structure could
invalid not be identified. An API message is written to the BSTERR
DD file. The server waits for another message request.
20 032 Response structure The response structure within a message request structure could
invalid not be identified. An API message is written to the BSTERR

DD file. The server waits for another message request.

20 033 Server error A severe error was detected by the API Server. Review the log
for additional error messages.

Chapter 3. API Return Codes and Reason Codes 3-13

3.3 Error Messages

3.3 Error Messages

All messages issued by the API are written to the file supplied in the
AACTL_MSG_DDN field of the API Control Block (AACTL). If this field is blank,
the default DD name of APIMSGS is assumed. The table below lists the possible
messages that the API package action program can issue (ENAPIPKL). This output is
similar to what you see when viewing the reports produced by a foreground or batch

action request.

Message ID Message Text Action

APIO000I Informational message. None. Intended to give you information related to your
request.

APIO000W Warning message. None. Intended to give you information related to your
request. This message is issued when records are returned but
fail to pass the selection criteria specified on the request.

APIOO00E Syntax error(s) detected. This message is issued when syntax error(s) are detected in the
request block data. Review the other detailed E-level
messages to determine the field(s) in error. Correct any errors
and re-run the job.

APIO001E Both the DDNAME and You can specify either DDNAME or DSNAME but not both.

DSNAME are specified. You specified an invalid value in this request block field. ff
Only one of the two indicates the field in error and vv indicates the value you
values can be specified. specified. Leave this field blank or use a value between 1-99.
The ff field value must be
blank or a value of 1-99.
vy is invalid.
APIO002E The ff field value must be You specified an invalid value in this request block field. ff
blank or a value of 1-99. indicates the field in error and vv indicates the value you
vy is invalid. specified. Leave this field blank or use a value between 1-99.
APIO003E The ff field value must be You specified an invalid value in this request block field. ff
Y or N. v is invalid. indicates the field in error and v indicates the value you
specified. Change the value to Y, N or to use the default,
leave it blank.
APIO004E The ff field value must be You specified an invalid value in this request block field. ff
blank. v is invalid. indicates the field in error and v indicates the value you
specified. This is a reserved field and must be left blank.

APIO005E Jf and ff are not specified. ff indicates the fields in error. You must specify one of these

One of the two fields fields.
must be specified.
APIO006E Both ff and ff are ff indicates the fields in error. You can specify only one of

specified. Only one of
the two fields can be
specified.

these fields.

3-14 API Guide

3.3 Error Messages

Message 1D Message Text Action
APIO007E The ff field value must be You specified an invalid value in this request block field. ff
1 or 2. v is invalid. indicates the field in error and v indicates the value you
specified. You must specify either 1 or 2.
APIOO0SE The ff field value must be You specified an invalid value in this request block field. ff
A, Cor R. v is invalid. indicates the field in error and v indicates the value you
specified. You must specify either A, C or R.
APIO009E Unable to obtain storage
to create where ffjf chain.
Result=vvvvvvvy
APIO010E Search is only valid when Select the copyback action if you want to search.
you have selected the
copyback action.
APIOO11E The ff field value must be You specified an invalid value in this request block field. ff
blank or a value of 0-99. indicates the field in error and vv indicates the value you
vv is invalid. specified. Leave this field blank or use a value between 0-99.
APIO012E The ff field value must be You specified an invalid value in this request block field. ff
B, C, H, M, S or blank. v indicates the field in error and v indicates the value you
is invalid. specified. You must specify either B, C, H, M, S or leave the
field blank.
APIO013E The (M)aster option is not You specified an invalid option. If you request component
valid when requesting data, then (M)aster option is not allowed.
component data.
APIO014E The ff field value must be You specified an invalid value in this request block field. ff
S or E. v is invalid. indicates the field in error and v indicates the value you
specified.
APIO015E The ff field value must be You specified an invalid value in this request block field. ff
CR, MO, CA, AP, EX, indicates the field in error and v indicates the value you
BO, BI or CO. wvis specified.
invalid.
APIO016E The ff field value must be You specified an invalid value in this request block field. ff
comprised of National indicates the field in error. Valid characters are 0-9, A-Z, @,
Standard Characters. # and $.
APIO017E The ff field value must be You specified an invalid value in this request block field. ff
blank or have a value of indicates the field in error and v indicates the value you
0-999. vvv is invalid. specified.
APIO018E The ff field value is blank You specified an invalid value in this request block field. ff

or consists of a wildcard
character.

indicates the field in error. You must specify a fully qualified
value for this field.

Chapter 3. API Return Codes and Reason Codes 3-15

3.3 Error Messages

Message ID Message Text Action

APIO019E The ff field value must be You specified an invalid value in this request block field. ff
H, Tor U. v is invalid. indicates the field in error and v indicates the value you

specified.

APIO020E You did not specify a You must provide a from DDNAME or DATASET name for
from DDNAME or this request.

DATASET name. You
need to provide one of the
two values.

API0021E The ff field value must be You specified an invalid value in this request block field. ff
C, D or M. v is invalid. indicates the field in error and v indicates the value you

specified.

APIO022E PKG status must be You are only allowed to approve or deny a package when the
IN-APPR, APPROVED or package status is IN-APPR, APPROVED or DENIED. v
DENIED in order to indicates the current status of the package.
approve or deny. Status
is v.

APIO023E PKG status must be You are only allowed to create, delete or modify a correlation
IN-EDIT in order to when the package status is IN-EDIT. v indicates the current
create, delete or modify a status of the package.
correlation. Status is v.

API0024E PKG status must be You are only allowed execute a package when the status is
APPROVED, IN-EXEC APPROVED, IN-EXEC or EXEC-DONE. v indicates the
or EXEC-DONE in order current status of the package.
to execute. Status is v.

APIO025E Unable to allocate the This temporary data set is necessary to execute a package.
BSTIPTOL1 file. This is an internal error condition. One of the allocation

parameters specified is not valid at your site. Review the other
E-level messages in the message file for detailed information.

APIO026E An enterprise correlation A request was made to associate an enterprise correlation with
already exists for this an Endevor package. A relationship already exists. Only one
package. relationship is permitted.

APIO027E No enterprise correlations A request was made to modify or delete an enterprise
are associated with this correlation associated with an Endevor package. No enterprise
package. correlations are associated with this package.

APIO028E The ff field value must be You specified an invalid value in this request block field. ff
A, E or X. v is invalid. indicates the field in error and v indicates the value you

specified.

API0029E The ff field value must be You specified an invalid value in this request block field. ff

L or P. v is invalid.

indicates the field in error and v indicates the value you
specified.

3-16 API Guide

3.3 Error Messages

Message 1D Message Text Action

APIO030E The ff field value must be You specified an invalid value in this request block field. ff
F or A. v is invalid. indicates the field in error and v indicates the value you

specified.

APIOO31E The ff field value must be You specified an invalid value in this request block field. ff
A,B,E,NorR. vis indicates the field in error and v indicates the value you
invalid. specified.

APIO032E The ff field value must be You must specify the "to environment/stage id" fields when the
specified when the search search field value is (B)etween or (R)ange. ff indicates the
field value is B or R. field in error.

APIO033E The ff field value contains You specified an invalid value in this request block field. ff
an invalid character or and indicates the field in error. The field must consist of the
embedded blank. values 1-9, A-Z or #, $ or @.

APIO034E The ff field value must be You specified an invalid value in this request block field. ff
blank. v is invalid. indicates the field in error and v indicates the value you

specified.

APIO035E The ff field value must be The value you specified in this request block field in invalid.
a1l or?2 orblank. vvis [f indicates the field in error and vv indicates the value you
invalid. specified.

APIO036E The ff field value must be The value you specified in this request block field in invalid.
B or blank. vv is invalid. ff indicates the field in error and vv indicates the value you

specified.

APIO037E The ff execution window The date field value must contain a valid date in the format of
date and/or time is invalid DDMMMYY (31JANO02). The format of the time must be
or the time is missing. HH:MM (23:59 or 00:00).

APIO038E The execution window The from date/time must be less than the to date/time value.
date/time 'to' date/time is
less than the 'from'
date/time.

APIO039E The ff field value must be The value you specified in this request block field in invalid.
B, C, H or blank. wv is ff indicates the field in error and vv indicates the value you
invalid. specified.

APIO040E The ff field value must be The value you specified in this request block field in invalid.
E or C. vv is invalid. Jf indicates the field in error and vv indicates the value you

specified.

APIO041E An enterprise correlation You must perform the delete correlation action prior to
exists for this package. executing this action.

Action is not allowed.
APIO042E Path name must be The presence of the AAREB block indicates long name

specified when processing
a long name element.

processing. The long name from/target path location must be
specified in this block.

Chapter 3. API Return Codes and Reason Codes 3-17

3.3 Error Messages

Message ID Message Text Action

APIO043E DDNAME and DSNAME Specify either the DDNAME or DSNAME name in the request
cannot be specified when block, but not both.
processing a long name
element.

APIO044E The ff field value must be The value you specified in this request block field in invalid.
blank or a value of 1-99. ff indicates the field in error and vv indicates the value you
yv is invalid. specified.

APIO045E The ff field value must be The value you specified in this request block field in invalid.
Y or N. v is invalid. Jf indicates the field in error and v indicates the value you

specified. Change the value to Y, N or to use the default,
leave it blank.

APIO046E The ff field value must be The value you specified in this request block field in invalid.
blank. v is invalid. ff indicates the field in error and v indicates the value you

specified. This is a reserved field and must be left blank.

APIO047E Jf1 and ff2 are not One of the two fields must contain a value. ff/ indicates the
specified. One of the two first field and ff2 indicates the second field.
fields must contain a
value.

APIO048E Append SCL can only be The append option is specified and the function is create or the
specified when modifying function is modify and no copy or import SCL file is specified.
a package.

APIO049E The ff field value must be The value you specified in this request block field in invalid.

1 or 2. v is invalid. ff indicates the field in error and v indicates the value you
specified. Change the value to a 1 or a 2.

APIO050E Package does not exist The function code must be C or M. If M is specified, the
and function is not create. package must exist.
v is invalid.

APIOOS1E The ff field value must be The value you specified in this request block field in invalid.
A, D, G, M or blank. v is ff indicates the field in error and vv indicates the value you
invalid. specified.

APIO052E The ff field value must be The value you specified in this request block field is invalid.
A, C, L, G, R or blank. v ff indicates the field in error and vv indicates the value you
is invalid. specified.

APIO053E The ff field value must be You specified the CCID value, so you also need to specify the
specified when the CCID ff field.
value is specified.

APIO054E The vv generate vv field is ~ The value you specified in this request block field is invalid.

invalid. The format must
be vv.

vv indicates the value you specified.

3-18 API Guide

3.3 Error Messages

Message ID Message Text Action

APIO055W The defaults table The value you specified conflicts with the defaults table value.
indicates comp validation The defaults table value is overridden.
is required. Value
overridden.

APIO056E From vv name value is You cannot have a from value that is less than a through
less than the through value.
name value.

APIO057E Path name must begin and You must include a slash at the beginning and ending
end with a forward slash. character of the path name.
vy is invalid.

APIO05S8E List action is not allowed The list action is not allow against the type of dataset you
against a sequential or specified.
null file, DSORG=wv.

APIO059W CSECT option ignored, CSECTs only exist for load modules. Option is ignored and
dataset is not a load processing continues.
library (RECFM=U).

APIO060E Call to CONIDRDS Internal error. Endevor attempted to retrieve the footprint
failed. Internal error. information and encountered an error.

APIO061E Specify either stage id or Only one of the two values can be specified.
stage num, but not both.

APIO062E SCL dataset is invalid or The dataset name you specified does not exist or for a PDS,
the member name is the member name is not specified or does not exist.
missing or not found.

APIO063E Unable to allocate the Internal error. Endevor allocates a temporary file to hold
temporary SCL dataset. generated SCL statements. The allocation of this file failed.

Review the other messages for details of why the allocation
failed.

APIO064E PKG status must be You are only allowed to modify a package when it is in
IN-EDIT in order for the IN-EDIT status. Use the RESET function to set this package
package to be modified. back to the IN-EDIT status.

Status is vv.

API0065S Unable to write to the Internal error. Endevor allocates a temporary file to hold
temporary SCL dataset. generated SCL statements. A write to this file failed. Make

sure the file was successfully allocated.

APIO066E Errors were detected by Review the CIMSGSI1 file for error details. If this file does
the package facility. not exist, add the CIMSGS1 DD statement to your JCL and
Review the CIMSGSI file re-execute the job.
for details.

APIO067E The copy from package, The package id specified in the copy from package field does

vy, does not exist.

not exist.

Chapter 3. API Return Codes and Reason Codes 3-19

3.3 Error Messages

Message ID Message Text Action

APIO068E The ff field value must be The value you specified in this request block field in invalid.
C or W. v is invalid. ff indicates the field in error and v indicates the value you

specified. Change the value to a C, for a component list
request or a W, for a where-used request.

APIO069E The ff field value be blank The value you specified in this request block field in invalid.
or UPLOADDD when If APDEF_RQ_RMTSCL=Y, then the field must be blank or
APDEF_RQ_RMTSCL=Y. UPLOADDD.

APIO090S The ff field value is The API is unable to determine the type of request due to an
invalid. This is an invalid function code. ff indicates the field in error and vvv
internal error. The indicates the value found.
unknown function code is
vy,

APIO091W pp/gg is an external The API is unable to determine if this user is associated with
approver group. The this external approver group. The API continues to check all
selection approver id, xx other groups looking for non-external approver groups
does not match the ACEE containing an approver id that matches the selection id. pp is
userid, yy. the package name, gg is the approver group name, xx is the
This message only appears selection .approver id specified in the request block and yy is

. the TSO/jobname.
under the following
conditions:

B The list package
header action is
requested.

8 The selection
approver id is
specified and it is
different than the
TSO/jobname user id.

® The approver group is
an external approver
group.

APIO100I Informational message. None. Intended to give you information related to your
request. Same as message id APIO000I except the timestamp
is not printed.

APIO100E Informational message. None. Intended to give you information related to your
request. Same as message id APIOO0OOE except the timestamp
is not printed.

APIO1011 Beginning of API action None. Bookend to indicate the API action processing has

processing. begun.

API01021 Dispatching API action. None. Bookend to indicate the request block contains no

syntax errors and the action is being dispatched.

3-20 API Guide

3.3 Error Messages

Message 1D Message Text Action
PKMR410E Enterprise packages This package action is not allowed against an enterprise
require the use of the package, unless initiated by the AllFusion CM Enterprise

AllFusion CM Enterprise Workbench facility.
Workbench facility.

Chapter 3. API Return Codes and Reason Codes 3-21

3-22 API Guide

Chapter 4. API Execution Reports and Trace
Facilities

Chapter 4. API Execution Reports and Trace Facilities 4-1

4.1 Overview

4.1 Overview

This chapter contains procedures and sample output for execution reports and trace
facilities.

4.1.1 Execution Reports

Endevor provides execution reports that record processing information for API function
calls.

4.1.2 Trace Facilities

Endevor API provides trace facilities to facilitate debugging your code. When a trace
facility is executed, it writes the status and current view of the data to a response file
when an API call is executed. If there is a problem completing the call, the trace
facilities record the area in which the error occurred.

You should refer to trace data found in BSTERR, BSTAPI, and EN$TRAPI DD name
datasets if the return code and reason code from the API request directs you to. You
should scan the files looking for error messages that might be recorded in the files.
All error messages are documented in the Error Codes and Messages Guide. If an
internal error occurs, you should send all traces to Technical Support.

Endevor API provides two trace facilities:
8 The API Diagnostic Trace
8 The API Internal Trace

4-2 API| Guide

4.2 API Execution Reports

4.2 API Execution Reports

The API writes an execution report to the message file defined by the
AACTL_MSG_DDN file after each function call is processed. This report includes
the requested function calls and their options and the actual processing that occurred.
Sample execution reports are provided below for the following API function calls:

® Define package action

® FElement action

& Inventory list

® List action

® Update action

4.2.1 Define Package Action Function Call Sample Report

This sample report format is used to record the processing information for the API
define package action request function call.

This report consists of two parts: first, the data from the request structure is formatted
and printed in a format similar to the output you receive when executing an Endevor
batch request; the second part is a summary of how many records were read and
selected and the highest return and reason detected.

From this report, you can see a syntax error was detected causing the action to fail.

API01001
API0100I
API0100I
APIO100I
APIO100I
API0100I
API01001
API01001
API01001
API01001
API01001
API01001
API01001
11:34:05 API0102I
11:34:14 API0000I

(C) 2002 Computer Associates International, Inc.

ENDEVOR API EXECUTION

DEFINE PACKAGE
PACKAGE ID: DEFINEPACKAGE45X
MESSAGE DDNAME: PDFMSG
FUNCTION: M
DESCRIPTION: PACKAGE DESCRIPTION GOES HERE012345
TYPE PACKAGE: S
SHARABLE: Y
BACKOUT ENABLED: Y
EXECUTION FROM DATE/TIME: 01AUGO1 11:01 TO DATE/TIME: 30MAY02
NOTES: 1ST LINE OF NOTES8901234567890123
2ND LINE OF NOTES12345678901234
3RD LINE OF NOTES1234567890123

DISPATCHING API ACTION
PROCESSING COMPLETE - RC=00000 REASON=00000

Note: To see why the define package action failed, add the DD statement,
CIMSGSI1, to the JCL stream.

//*CIMSGS1 DD SYSOUT== (DEFINE PACKAGE MESSAGES)

This statement contains error messages detected by the Endevor package
facility. Add it to the section with the other trace DD statements. If the error

Chapter 4. API Execution Reports and Trace Facilities 4-3

4.2 API Execution Reports

message APIOO66E is returned from a define package request, the CIMSGS1
DD statement provides details of why the action failed. Specify this DD
statement only when debugging a define package problem.

4.2.2 Element Action Function Call Sample Report

This sample report format is used to record the processing information for all of the
API element action function calls.

This report consists of two parts: first, the data from the request structure is formatted
and printed in a format similar to the output you receive when executing an Endevor
batch request; the second part is the action execution log. This is the exact same
output you receive when executing an Endevor foreground or batch action.

From this report, you can determine the ADD element action request field values and
determine the results of your request by viewing the execution log.

(C) 2002 Computer Associates International, Inc. 18JULO1 15:32:43 PAGE 1

ENDEVOR API EXECUTION REPORT
15:32:43 APIOO00I STARTING PRINT OF API ACTION REQUEST DATA
15:32:43 APIO000I
15:32:43 APIOO00I ADD ELEMENT: APIB
15:32:43 APIO000I THROUGH: APIU
15:32:43 API0O000I FROM DSNAME: BST.BUCFRO2.APISRC

15:32:43 API0O000I TO ENVIRONMENT: INT

15:32:43 API0000I SYSTEM: NDVRMVS

15:32:43 API0000I SUBSYSTEM: FHB

15:32:43 API0000I TYPE: COBCOPY

15:32:43 API0000I OPTIONS

15:32:43 API0000I CCID: CCIDVALUEADD

15:32:43 APIO000I COMMENT: COMMENTADD12345678901234567890
15:32:43 APIO000I UPDATE IF PRESENT: Y
15:32:43 APIO000I DELETE INPUT SOURCE: N
15:32:43 APIO000I OVERRIDE SIGNOUT: Y

15:32:43 APIO000I BYPASS GENERATE PROCESSOR: N

15:32:43 API0O000I
15:32:43 APIO000I API ACTION REQUEST DATA SUCCESSFULLY PRINTED
15:32:43 API0000I

15:32:43 C1Y0015I STARTING PARSE OF REQUEST CARDS

STATEMENT #1
15:32:43 C1Y0016I REQUEST CARDS SUCCESSFULLY PARSED

15:32:44 C1G0202I ACTION #1 / STMT #1
15:32:44 (C1G02031 ADD ELEMENT APIB

15:32:44 (C1G0O2051 FROM DSNAME: BST.BUCFROZ2.APISRC MEMBER: APIB
15:32:44 (C1G0O2041 TO ENVIRONMENT: INT SYSTEM: NDVRMVS SUBSYSTEM
15:32:44 (1602321 OPTIONS: OVERRIDE SIGNOUT, UPDATE

15:32:44 (C1G02321I CCID: CCIDVALUEADD

15:32:44 (C1G02321I COMMENT: COMMENTADD12345678901234567890
15:32:45 (C1GO265I PROCESSOR GROUP *NOPROC* FOR ELEMENT APIB WAS

15:32:46 SMGR122W NO ELEMENT SOURCE CHANGES DETECTED

15:32:46 SMGR1251 ELEMENT APIB 01.02 NOT UPDATED BY BST.APISRC(APIB)
15:32:46 C1G02001 REQUEST PROCESSING FOR ELM APIB COMPLETED

4-4 API| Guide

4.2 API Execution Reports

4.2.3 Inventory List Function Call Sample Report

This sample report format is used to record the processing information for all of the
API inventory list function calls.

This report consists of two parts: first, the data from the request structure is formatted
and printed in a format similar to the output you receive when executing an Endevor
batch request; the second part is a summary of how many records were read and
selected and the highest return and reason codes detected.

From this report, you can see that three records were selected and written to a file
defined to the APIEXTR DD statement and that the highest return code was zero.

(C) 2002

13:19:12

13:19:12
13:19:12
13:19:12

Computer Associates International, Inc. 18JULO1 13:19:12 PAGE 1

API01011
AP101001
API01001I
API01001I
API01001I
API01001I
API01001I
AP1I01001I
API01001I
API01001I
AP101021
API00001I
API0000I

ENDEVOR API EXECUTION REPORT

BEGINNING OF API ACTION PROCESSING
LIST ENVIRONMENT

TO DDNAME: APIEXTR

ENVIRONMENT: INT

THRU ENVIRONMENT: PRD

OPTIONS

PATH: L RETURN: A SEARCH: A

API ACTION REQUEST DATA SUCCESSFULLY PRINTED
DISPATCHING API ACTION

RETURNED COUNT=00003, SELECTED COUNT=00003
PROCESSING COMPLETE - RC=00000 REASON=00000

4.2.4 List Package Action Function Call Sample Reports

The following sample report formats are used to record the processing information for
the API list package action function calls.

The reports consists of two parts: first, the data from the request structure is formatted
and printed in a format similar to the output you receive when executing an Endevor
batch request; the second part is a summary of how many records were read and
selected and the highest return and reason codes detected.

This example shows a list package header action request. There are are eight packages
beginning with a package id of PK1, and five were eliminated due to the selection
criteria. The package header data associated with the remaining three packages was
written to the data set associated with the LPKLST DD name.

Chapter 4. API Execution Reports and Trace Facilities 4-5

4.2 API Execution Reports

(C) 2002 Computer Associates International, Inc. 10NOVO1 10:08:09 PAGE 1
ENDEVOR API EXECUTION
10:08:09 APIO101I BEGINNING OF API ACTION PROCESSING
API01001 LIST PACKAGE HEADER
API01001 PACKAGE ID: PK1x
API01001 TO DDNAME: LPKLST
API01001 WHERE PACKAGE TYPE EQUAL: S
API0100I DATE TYPE CA IS OLDER THAN 30 DAYS
APIQ1001 APPROVER ID: LUS0SO1
API01001 STATUS SELECTION OPTIONS:
API01001 IN-EDIT.....: Y IN-APPROVAL: Y
API0100I DENIED......: N APPROVED...: Y
APIQ100I IN_EXECUTION: Y EXECUTED...: Y
API0100I COMMITTED...: Y
API101001
10:08:10 API01021 DISPATCHING API ACTION
10:08:11 API0OOOI RETURNED COUNT=00008, SELECTED COUNT=00003
10:08:11 API0OOOI PROCESSING COMPLETE - RC=00000 REASON=00000
The next example contains a list package cast action request. The report shows 29
cast report lines were extracted and written to the data set associated with the
LCALST DD name.
(C) 2002 Computer Associates International, Inc. 300CTO1 13:27:17 PAGE 1
ENDEVOR API EXECUTION
13:27:17 APIO101I BEGINNING OF API ACTION PROCESSING
API0100T LIST PACKAGE CAST REPORT
API0100I PACKAGE ID: PK1231
API0100I TO DDNAME: LCALST
API101001
13:27:17 API01021 DISPATCHING API ACTION
13:27:18 API0OOOI RETURNED COUNT=00029, SELECTED COUNT=00029
13:27:18 API0OOOI PROCESSING COMPLETE - RC=00000 REASON=00000
The next example shows a list package correlation action request. The report shows 2
syntax errors were detected in the request block. A return code of 12 with a reason
code of 2 is issued whenever syntax errors are detected.
(C) 2002 Computer Associates International, Inc. 280CTOL 15:55:11 PAGE 1
ENDEVOR API EXECUTION
15:55:11 APIO101I BEGINNING OF API ACTION PROCESSING
API01001 LIST PACKAGE CORRELATION
API0100I PACKAGE ID: PK1x
API0100I TO DDNAME: LCOLST
API0100I WHERE CORRELATION TYPE EQUAL: J
API101001
15:55:11 APIOOIS8E THE ALCOR_RQ_PKGID FIELD VALUE IS BLANK OR CONTAINS A WILDCARD CHAR.
15:55:11 APIOOI9E THE ALCOR_RQ_COR TYPE FIELD VALUE MUST BE H, I OR U. J IS INVALID.
15:55:11 APIGOOOE SYNTAX ERROR(S) DETECTED, PROCESSING TERMINATED
15:55:11 API0OOOI
15:55:11 APIOOOOI RETURNED COUNT=00000, SELECTED COUNT=00000
15:55:11 API0OOOI PROCESSING COMPLETE - RC=00012 REASON=00002

4-6 API| Guide

4.2 API Execution Reports

4.2.5 Update Package Action Function Call Sample Reports

The following sample report formats are used to record the processing information for
the API update package action function calls.

The reports consists of two parts: first, the data from the request structure is formatted
and printed in a format similar to the output you receive when executing an Endevor
batch request; the second part is a summary of how many records were read and
selected and the highest return and reason codes detected.

Below is a copy of a sample API execution report for an approve package action
request. In this example, the action completed successfully. The return code and the
reason code are set to zero.

(C) 2002 Computer Associates International, Inc. 280CTO1 12:28:51 PAGE 1
ENDEVOR API EXECUTION
12:28:51 API01011 BEGINNING OF API ACTION PROCESSING
AP101601 APPROVE PACKAGE
API01601 PACKAGE ID: PKIPKG87
API01001 MESSAGE DDNAME: PAPMSG
AP101001
12:28:51 AP101621 DISPATCHING API ACTION
12:29:02 API0@OOI PROCESSING COMPLETE - RC=00600 REASON=60000
The next example shoes a sample API execution report for a cast package action
request. Notice 3 syntax errors were detected. A return code of 12 with a reason code
of 2 is issued whenever syntax errors are detected.
(C) 2002 Computer Associates International, Inc. 01JUNO1 9:08:31 PAGE 1
ENDEVOR API EXECUTION
09:08:32 API01011 BEGINNING OF API ACTION PROCESSING
AP101601 CAST PACKAGE
AP101001 PACKAGE ID: PK1PGKO6
AP101001 MESSAGE DDNAME: PCAMSG
AP101001 VALIDATE COMPONENTS: C
AP11001 ENABLE BACKOUT: B
AP11001 EXECUTION WINDOW FROM: G1JUNOL HH:MM TO: 36NOVOL 23:59
AP1100I
09:08:32 APIGOO3E THE APCAS_RQ_VALCMP FIELD VALUE MUST BE Y, N OR W. C IS INVALID
09:08:32 APIGOO3E THE APCAS_RQ_BOENABLED FIELD VALUE MUST BE Y OR N. B IS INVALID
09:08:32 APIGO37E THE FROM EXECUTION WINDOW DATE AND/OR TIME IS INVALID
09:08:32 APIGBOOE SYNTAX ERROR(S) DETECTED, PROCESSING TERMINATED
AP101001
09:08:32 APIOBOOI PROCESSING COMPLETE - RC=00012 REASON=00002

The following report shows a create package correlation action request. In this
example, the correlation record already existed. A return code of 12 with a reason
code of 14 is issued whenever the condition is detected.

Chapter 4. API Execution Reports and Trace Facilities 4-7

4.2 API Execution Reports

(C) 2002 Computer Associates International, Inc. 280CTO1 14:53:59 PAGE 1
ENDEVOR API EXECUTION
14:53:59 APIO101I BEGINNING OF API ACTION PROCESSING
API01001 CREATE CORRELATION
API01001 PACKAGE ID: PKIPKG54
API0100I MESSAGE DDNAME: PCOMSGC
API0100I CORRELATION TYPE: H
API0100I CORRELATION ID: PK1CORR54
API0100I ~ CORRELATION DATA: ASSOCIATE ENDEVOR AND ALLFUSION HARVEST CM PACKAGE
API01001
14:53:59 API01021 DISPATCHING API ACTION
14:54:00 PKMRO2OE CORRELATION ALREADY EXISTS
14:54:00 APIGOOOE ERROR(S) DETECTED, PROCESSING TERMINATED
14:54:00 API0O0OI
14:54:00 API000OI PROCESSING COMPLETE - RC=00012 REASON=00014
Below is a copy of a sample API execution report for a modify package correlation
action request. In this example, the action completed successfully. The return code
and the reason code are set to zero.
(C) 2002 Computer Associates International, Inc. 280CTO1 12:29:02 PAGE 1
ENDEVOR API EXECUTION
12:29:02 APIO101I BEGINNING OF API ACTION PROCESSING
API0100I MODIFY CORRELATION
APIO100I PACKAGE ID: PK1PKG54
APIO100I MESSAGE DDNAME: PCOMSGM
APIQ100I CORRELATION TYPE: H
API0100I CORRELATION ID: PK1CORR54
API01001 CORRELATION DATA: PREPARE TO EXECUTE BOTH PKGS ON 12/31/01
API101001
12:29:02 API01021 DISPATCHING API ACTION
12:29:02 API0OOOI PROCESSING COMPLETE - RC=00000 REASON=00000
The next example shows an execute package request. In this report, the action
completed successfully. The return code and the reason code are set to zero. A
second response file, CIEXMSGS, is also created. It contains the standard Endevor
Syntax Request Report, the Endevor Execution Report and the Endevor Action
Summary Report that are produced when a package is executed in foreground or
background mode.
(C) 2002 Computer Associates International, Inc. 300CTO1 15:35:13 PAGE 1
ENDEVOR API EXECUTION
15:35:13 APIOLOLI BEGINNING OF API ACTION PROCESSING
API01001 EXECUTE PACKAGE
API101001 PACKAGE ID: PK1PKG54
API101001 MESSAGE DDNAME: APIMSGS
API101001
15:35:13 API01021 DISPATCHING API ACTION
15:35:27 API0OOOI PROCESSING COMPLETE - RC=00000 REASON=00000

4-8 API| Guide

4.3 The API Diagnostic Trace — BC1PAPI

4.3 The API Diagnostic Trace — BC1PAPI

The API Diagnostic Trace records diagnostic and informational messages for each API
transaction. The trace should be run only at the request of Endevor technical support.
To activate the Endevor API Diagnostic Trace, include the following DD statement in
your JCL stream:

//BSTAPI DD SYSOUT=A

Below is an example of a response file created with the BC1PAPI trace facility.

(C) 2002 Computer Associates International Endevor 02/04/01 07:34:00 PAGE 1

DIAGNOSTICS OUTPUT LISTING

BCIPAPI - INITIALIZING - VERSION 01/21/99 12.49
BC1PAPI SEND MESSAGE REQUEST

BC1PAPI APISTG $BGETSTG RC=00004 RESULT=NEWSTG
BC1PAPI MAIN2000 $PINQ RC=00012

BC1PAPI MAIN200O $PINIT RC=00000

BC1PAPI MAIN2100 $PGET RC=00000

BC1PAPI BMSG2000 - 0040 0000 000A 0001 $CTL 0006EF20
BC1PAPI BMSG2000 - 0050 0000 0450 0001 LELQ 0006EF60
BCIPAPI BMSG2000 - 039C 0000 0451 0001 LELR 8006EFBO
BC1PAPI MAIN2300 $PSEND RC=00004

BCIPAPI ISSUING ATTACH FOR API SERVER

BC1PAPI ATTA1000 $PWAIT RC=00000

BC1PAPI ATTA2000 $PRECV RC=00000

BC1PAPI ATTA3000 $PFREE RC=00000

BC1PAPI MAIN2300 $PSEND RC=00000

Chapter 4. API Execution Reports and Trace Facilities 4-9

4.4 The API Internal Trace — EN$TRAPI

4.4 The API Internal Trace — EN$TRAPI

The API Internal Trace records detailed internal trace information along with API data
block dumps. This trace should only be used to debug a problem.

To activate the Endevor API Internal Trace, include the following DD statement in

your JCL stream:

//ENSTRAPI DD SYSOUT=A

Below are examples of response files created with the ENSTRAPI trace facility.

ENAPIMGR INIT3000
ENAPIMGR INIT4000
ENAPIMGR INIT5000
ENAPIMGR INIT6000
ENAPIMGR INIT7000
ENAPIMGR PROC1000
ENAPIMGR PROC3000
00049154 (+0000)

00049174 (+0020)

00049194 (+0040)

000491B4 (+0060)
000491D4 (+0080)
000491F4 (+00A0)
00049214 (+00C0)

(C) 2002 Computer Associates International

Endevor

ENDEVOR API INTERNAL TRACE

ENAPIMGR - INITIALIZING - VERSION 01/21/99 12.41

$PINIT RC=00000
$PHDL RC=00000
$PGET RC=00000
$PSEND RC=00000
MSGIORTN INTERCEPT ESTABLISHED
$PRECV RC=00000

COMPLETE MESSAGE RECEIVED - ADDRESS=00049154 LENGTH=045C

0060045C 5BD4E2C7 00000003 00000000 00000000
00000000 00000000 00000000 00000000 00400000
C6C9D3C5 C5E7E3F1 C5D3D440 40404040 40404040
FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO 00500000
C9D5E340 40404040 D5CAESD9 DAESE240 C2C1E2C5
C2C3F1D7 C9DAC7D9 4040F140 40404040 40404040
039C0000 04510001 D3C5D3D9 40404040 40404040

00000000
000A0001
40404040
04500001
40404040
C1C2C3C4
40404040

00000000
5BC3E3D3
FOFOFOFO
D3C5D3D8
C1E2D4D7
C6C74040
40404040

02/04/01 07:34:04 PAGE 1

00000000
D4E2CT7F3
FOFOFOFO
D7C1C140
C7D44040
40404040
40404040

* - x§MSG *
* $CTLMSG3 *
*FILEEXT1ELM 00000000
*0000000000000000 & & LELQPAA *
*INT NDVRMVS BASE ~ ASMPGM *
*BCIPIMGR 1 ABCDFG *
* LELR *

The following example contains additional trace information for an ADD element

action function call.

ENAPIMGR CALL1020
ENAPIACT XADDRUTN
ENAPIACT PRINTRTN
ENAPIACT PRINTRTN
ENAPIACT PRINTRTN
ENAPIACT PRINTRTN
ENAPIACT DACTRUTN
ENAPIACT DACTRUTN
ENAPIACT DACTRUTN
ENAPIACT DACTRUTN
ENAPIACT DACTRUTN
ENAPIACT DACTRUTN
ENAPIACT XADDRUTN
ENAPIMGR CALL4000
ENAPIMGR PROC4000

(C) 2002 Computer Associates International

Endevor

ENDEVOR API INTERNAL TRACE

MSG PRB, ADDMSG , IS SUCCESSFULLY SETUP
-- ADD ACTION ROUTINE

- PRINT ACTION REQUEST BLOCK ROUTINE

- CALLING ENAPIPRA MODULE

- CALL TO ENAPIPRA COMPLETE. RC=00000
COMPLETE - RC=00000 RE=00000

- DISPATCH ACTION ROUTINE

- CALLING C1BM4100 MODULE

- CALL TO C1BM4100 COMPLETE. RC=00000

- CALLING C1BM4200 MODULE

- ERRORS DETECTED BY CALLED MODULE
COMPLETE - RC=00004 RE=00000

COMPLETE - RC=00004 RE=00000

ROUTINE RC=00004 RE=00000

COMPLETE MESSAGE SENT - ADDRESS=0004B154

02/04/01 07:34:04 PAGE 1

4-10 API Guide

Appendix A. Sample API Programs

Appendix A. Sample APl Programs A-1

A.1 Overview

A.1 Overview

This appendix provides a description of sample programs and JCL that you can use to
test the Endevor API. The appendix includes:

® A description of how to execute an API program outside of a processor using the

NDVRCI program.

A description of COBOL program CCIDRPT]1 that produces a list of elements and
creates a CCID cross-reference report. The JCL to execute program CCIDRPT]I.

A description of Assembler program ENHAAPGM that produces a list of
environments and writes the responses to a response file. The JCL to execute
program ENHAAPGM.

A description of Assembler program ENHAEPGM that executes each of the
element action function calls and writes the responses to a response file. The JCL
to execute program ENHAEPGM.

A description of Assembler program ENHAPLST that executes the list package
action function calls and writes the responses to a response file. The JCL to
execute program ENHAPLST.

A description of Assembler program ENHAPUPD that executes the update
package action function calls and writes the responses to a response file. The JCL
to execute program ENHAPUPD.

A description of Assembler program ENTBJAPI that executes different inventory
list function calls and writes the responses to an output file. The JCL to execute
program ENTBJAPL

A-2 API| Guide

A.2 Executing an API Program

A.2 Executing an APl Program

The NDVRCI1 program allows you to execute a program that issues Endevor API
function calls outside of a processor.

A.2.1 Description

You must execute NDVRCI1 and pass the name of your program through the PARM=
parameter on the EXEC statement. If your program requires parameter data, you can
append it to the parameter string using a comma to separate the program name from
your parameter data.

For example:

//STEP1 EXEC PGM=NDVRC1,PARM='TESTAPI1,DATA1,DATA2'

NDVRCI1 executes program TESTAPI1 and passes the following parameter
information to the program through register 1:

R1 = 00081010
at address 81010 the following is found: 00081020
at address 81020 the following data (shown in HEX) can be found:

000C6BC4C1E3C1F16BC4C1E3CIF2
where:

length value = 12

parm data = ,datal,data2

NDVRCI reserves the first eight characters of the PARM parameter for the program
name. All other parameters, starting with the ninth character, are passed to the API
program as parameter data. For Assembler programs, register 1 contains an address
that points to the parameter data where the first two bytes contain the parameter length
followed by the parameter data.

Note: If you do not want the first comma passed to the program, enter the data
immediately after the program name and omit entering the first comma.

COBOL Users: NDVRCI reserves the first eight characters of the PARM parameter
for the program name. All other parameters, starting with the ninth character, are
passed to the API program and placed into the LINKAGE SECTION storage provided
in the API program. The API program must contain the PROCEDURE DIVISION
USING storage clause, where storage is the Ol-level name of the variable specified in
the LINKAGE SECTION.

Using the same parameter information as shown in the Assembler example, the storage
defined in the LINKAGE SECTION must be defined as 14 bytes in length and contain

Appendix A. Sample APl Programs A-3

A.2 Executing an API Program

the two byte-length value (000C) in binary, PIC 9(2) COMP, followed by the 12 bytes
of parameter data (,datal,data2) in character format, PIC X(12).

A-4 API| Guide

A.3 Sample COBOL Program — CCIDRPT1

A.3 Sample COBOL Program — CCIDRPT1

The COBOL program, CCIDRPT1, produces a list of elements based on user input and
creates a CCID cross-reference report. This program was written to show an
application use of the API feature. JCL that you can use to execute this program
appears in A.3.3, “JCL to Execute CCIDRPT1 — BC1JRAPI” on page A-7.

A.3.1 Description

The source for this program is distributed with Endevor as member name CCIDRPTI1
in the iprfx.iqual. SOURCE data set.
The CCIDRPT1 program performs the following actions:
1. Issues an API list element function call and writes the responses to a response file.
2. Reads each response record.

3. Issues an API extract element function call specifying the change option. A
second file is created containing the changes associated with each element.

4. Extracts the CCID data and writes it to a sort file; the CCID data precedes the
element source statements.

5. Reads the sort file and generates a report.

Only source code is provided for this program. Review the source and make any
desired modifications. You must compile and link-edit this module into the
uprfx.uqual. AUTHLIB library before attempting to execute it. There are no
restrictions on linkage editor AMODE/RMODE parameters.
(AMODE=31,RMODE=ANY or AMODE=24, RMODE=24).

Appendix A. Sample APl Programs A-5

A.3 Sample COBOL Program — CCIDRPT1

A.3.2 CCIDRPT1 Output Report

Below is a portion of the report output from program CCIDRPT1:

USER SPECIFICATIONS:
FROM ENVIRON:QAS
TO ENVIRON:
SEARCH SETTING - CURRENT LOCATION
PATH SETTING - PHYSICAL
PROCESS FIRST OCCURRENCES OF ELEMENT AND TYPE

ENDEVOR INVENTORY REPORT BY CCID

PAGE

E

THIS REPORT PRODUCES A CCID CROSS REFERENCE ON ELEMENT

INVENTORY SPECIFIED BY THE USER.

BELOW.

SEE SPECIFICATION INPUT

E T

STGID:2 SYSTEM:NDVRMVS

STGID:

SUBSYS:BASE

ELEMENT :

TYPE:ASMPGM

CCID: 15797110
ELEMENT TYPE
C1GP2000 ASMPGM
CCID: NMAN
ELEMENT TYPE
C1GSCIPO ASMPGM
CCID: OFT
ELEMENT TYPE
ENCOPTBL ~ ASMPGM
CCID: PKGESI
ELEMENT TYPE
CONMSGSP ~ ASMPGM
C1SPMISC ASMPGM
ENMP3CRE ASMPGM
CCID: P0O000644
ELEMENT TYPE
C1BMLO1O ASMPGM
CCID: POO0O701
ELEMENT TYPE
C1BR2000 ASMPGM
CCID: P0O000894
ELEMENT TYPE
ENBX1400 ASMPGM

VV.
01.

VV.
01.

VV.
.09

01

VV.
.48

01

01.
.03

01

VV.
.28

01

VV.
.25

01

VV.
01.

LL
54

LL

17

LL

LL
38

LL

LL

LL
19

DATE
240CT99

DATE
24JUL99

DATE
160CT99

DATE

05SEP96
310CT99
21JUL99

DATE
20MAY96

DATE
30DEC99

DATE
24DEC99

TIME
13:33

TIME
13:15

TIME
14:25

TIME

11:44
10:33
09:11

TIME
09:09

TIME
11:00

TIME
16:26

OLEJUO1

OLEJUO1

BUCFRO2

DYSR0O1
BUCFRO2
DYSR0O1

BERBE0O2

BERBEO2

BERBE0O2

ENDEVOR INVENTORY

ENVIRON SID
QAS 2
ENVIRON SID
QAS 2
ENVIRON SID
0AS 2
ENVIRON SID
QAS 2
QAS 2
QAS 2
ENVIRON SID
0AS 2
ENVIRON SID
QAS 2
ENVIRON SID
0AS 2

REPORT BY CCID

SYSTEM
NDVRMVS

SYSTEM
NDVRMVS

SYSTEM
NDVRMVS

SYSTEM

NDVRMVS
NDVRMVS
NDVRMVS

SYSTEM
NDVRMVS

SYSTEM
NDVRMVS

SYSTEM
NDVRMVS

SUBSYS
BASE

SUBSYS
BASE

SUBSYS
BASE

SUBSYS
BASE
BASE
BASE

SUBSYS
BASE

SUBSYS
BASE

SUBSYS
BASE

PAGE

COMMENT
disallow batch adm/ pkg w/in processors

COMMENT
ADD LOGIC FOR NAME CCID VALID FLAG

COMMENT
Optional Features Table Source

COMMENT

Add package ESI support
EST SUPPORT

Package exit 1 support

COMMENT
S0c4 at +82 during clear footprnt cmd.

COMMENT
zero days value for reports

COMMENT
included copybooks have space b4 period

A-6 API Guide

A.3 Sample COBOL Program — CCIDRPT1

A.3.3 JCL to Execute CCIDRPT1 — BC1JRAPI

The JCL for this program is distributed with Endevor as member name BC1JRAPI in
the iprfx.iqual.JCL data set. This job shows how to execute program CCIDRPTI.
The load module along with its source is distributed.

The JCL to execute program CCIDRPT1 appears below. Look at the JCL comment
statements that describe updates you need to make before you execute this JCL stream.

In this example, DD name, MSG3FILE, describes the message response file and DD
name, EXT1ELM, describes the response file for the element extract responses.

//* (COPY JOBCARD)

//***

//* *
//* BC1JRAPI - THIS IS SAMPLE JCL THAT EXECUTES PROGRAM CCIDRPT1 =*
//* WHICH IS DISTRIBUTED IN SOURCE AS AN EXAMPLE OF *
//* HOW TO WRITE (USE) THE ENDEVOR API FACILITY. *
//* *
//* THE FOLLOWING UPDATES MUST BE MADE TO THIS JCL BEFORE *
/1* IT CAN BE EXECUTED: *
//* *
//* 1. UPDATE THE JOBCARD TO REFLECT CORRECT SITE INFORMATION *
//* 2. REVIEW THAT THE STEPLIB AND CONLIB DATA SET NAMES ARE *
//* CORRECT. *
/1* - uprfx.uqual.AUTHLIB *
A - iprfx.iqual.AUTHEXT *
[/ - iprfx.iqual.CONLIB *
//* 3. MODIFY THE PROGRAMS DATA INPUT. AS AN EXAMPLE, THE *
//* INPUT DATA HAS A SINGLE REQUEST. *

//***
//STEP1 EXEC PGM=NDVRC1,PARM='CCIDRPT1',DYNAMNBR=1500,REGION=4096K
//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHEXT,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//SYSOUT DD SYSOUT=*

Appendix A. Sample APl Programs A-7

A.3 Sample COBOL Program — CCIDRPT1

//SYSPRINT DD SYSOUT=+
//BSTERR ~ DD SYSOUT=+
//MSG3FILE DD DSN=8&MSG3FILE,DISP=(NEW,PASS),

/l UNIT=SYSDA,SPACE=(TRK, (5,5)),

// DCB=(RECFM=FB,LRECL=133,BLKSIZE=13300)
//EXT1ELM DD DSN=&&EXT1ELM,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK, (5,5)),

// DCB=(RECFM=VB,LRECL=2048,BLKSIZE=22800)
//EXT2ELM DD DSN=&&EXT2ELM,DISP=(NEW,PASS),

/l UNIT=SYSDA,SPACE=(TRK, (5,5)),

/l DCB=(RECFM=VB,LRECL=2048,BLKSIZE=22800)
//WORKELM DD DSN=&&WORKELM,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK, (5,5)),

/l DCB=(RECFM=FB,LRECL=115,BLKSIZE=1150)
//SORTELM DD DSN=&&SORTELM,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK, (5,5)),

/l DCB=(RECFM=FB,LRECL=115,BLKSIZE=1150)
//CCIDRPT1 DD SYSOUT=*

/1%

//* SYSIN DATA STRUCTURE INFORMATION

/1%

//* COLUMN 1 = ! STATEMENT TREATED AS A LINE COMMENT & WILL
/1% ON THE REPORT

/1%
//* COLUMNS 1-4
//* COLUMN 5

"ELOC' INPUT REQUEST ID
PATH SETTING

/1% "L' = LOGICAL PATH

/1% '"P' = PHYSICAL PATH

//* COLUMN 6 = SEARCH SETTING

/1% 'A' = SEARCH ALL

//* 'B' = SEARCH BETWEEN

/1% 'N' = NO SEARCH

/1% '"E' = SEARCH NEXT

A 'R' = SEARCH RANGE

//* COLUMN 7 = RETURN SETTING

/1% "A' = RETURN ALL HITS

/1% "F' = RETURN FIRST HIT

//* COLUMNS 8-15 = ENVIRONMENT NAME (EXPLICIT)

//* COLUMN 16 = STAGE ID (EXPLICIT)

//* COLUMNS 17-24 = SYSTEM NAME (MAY BE WILD)

//* COLUMNS 25-32 = SUBSYSTEM NAME (MAY BE WILD)

//* COLUMNS 33-42 = ELEMENT NAME (MAY BE WILD)

//* COLUMNS 43-50 = TYPE NAME (MAY BE WILD)

//* COLUMNS 51-58 = TO ENVIRON NAME SPECIFY ON SEARCH ='B' OR 'R'
/1% & MUST BE EXPLICIT
//* COLUMN 59 = TO STAGE ID SPECIFY ON SEARCH ='B' OR 'R’
/1% & MUST BE EXPLICIT

//* COLUMNS 60-69

TO ELEMENT NAME (MAY BE WILD)

A-8 API Guide

A.3 Sample COBOL Program — CCIDRPT1

YK Ty [S J - . S G —— DU S ——_—— -
//SYSIN DD =

kkhkkkhkkhkhkkhhkhhkkhhkhhhkhkhkkhhkhkhkkhhhkhhkhkhhkhhkhkhhkhkhhkhkhkhkhhkhkhkkhhkhkhhkhkhkkhhkhkhkkhkhkkkkx
kkhkkkhkkhkhkkhkhkhkhkkhhkhhhkhkhkkhhkhkhkkhkhkkhhkhkhkkhhkkhhkhkhkhkhkhkhkhhkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkkkx
hhkkkkkhhkkhkhhkkhhkhhhhhhhhhhhhhkhhhhhhkhhhhhhkhkhhhhkhhhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkx

* *
* THIS REPORT PRODUCES A CCID CROSS REFERENCE ON ELEMENT *
* INVENTORY SPECIFIED BY THE USER, SEE SPECIFICATION INPUT BELOW. =
* *

AR AR AR R AR A A Ak A R A A R A R A AR A AR AR A AR AR A A KA AR AR A A h AR h A hd Ak hdhhhhdhhdhhdhhkhdhhdhdkx
Fhhkhkhhhkhkrdhkhdrhkhdhhhdhhhdhhhdhhdhdhhdhdhhdhdhhddhhdhhhdhhhdrhdhdhkdkdikdkdxx
B o R b o o R kR R R R R R R R R
ELOCPNFINT INDVRMVS BASE = ASMPGM

//% PRINT ANY MESSAGES

//STEP2 ~ EXEC PGM=IEBGENER

//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//SYSUT1 DD DSN=&&MSG3FILE,DISP=(OLD,DELETE)

//SYSUT2 DD SYSOUT=+

Appendix A. Sample APl Programs A-9

A.4 Sample List Environment Function Call — ENHAAPGM

A.4 Sample List Environment Function Call — ENHAAPGM

The sample Assembler program, ENHAAPGM, produces a list of environments and
writes the responses to a response file. You can use this program as a template for
creating other inventory list function calls. For example, you can modify the request
structure field values to produce a list of types or add an additional function call to
produce a list of systems. JCL to execute this program appears in A.4.2, “JCL to
Execute ENHAAPGM — BC1JAPGM”

A.4.1 Description

The source for this program is distributed with Endevor as member name
ENHAAPGM in the iprfx.iqual. SOURCE data set. The ENHAAPGM program
performs the following actions:

1. Issues a request to the API to read the MCF and build a list of all the
environments.

2. Writes the list of environments to a response file.

3. Writes any inventory or source management messages to the message data set.

Only source code is provided for this program. Review the source and make any
necessary modifications. The names of the starting and ending environments and the
search options are candidates for modifications. You must assemble and link-edit this
module into uprfx.uqual. AUTHLIB before attempting to execute it. There are no
restrictions on linkage editor AMODE/RMODE parameters
(AMODE=31,RMODE=ANY or AMODE=24, RMODE=24).

A.4.2 JCL to Execute ENHAAPGM — BC1JAPGM

The JCL in this section is distributed with Endevor as member name BC1JAPGM in
the iprfx.iqual.JCL data set. This job can be tailored and used to execute the
ENHAAPGM program. The sample API program must be executed from an
authorized library.

The JCL to execute program ENHAAPGM appears below. In this example, the DD
name APIMSGS describes the message file, in this case SYSOUT, and APILIST
describes the response file for the list environment function call.

A-10 API Guide

A.4 Sample List Environment Function Call — ENHAAPGM

//*(JOBCARD)
gy *
//* *
//* (C) 2002 COMPUTER ASSOCIATES INTERNATIONAL, INC. *
//* *
//* NAME: BC1JAPGM *
//* *
//* PURPOSE - THIS IS SAMPLE JCL TO INVOKE THE ASSEMBLER *
//* SAMPLE API PROGRAM: ENHAAPGM *
//* *
//* THE FOLLOWING UPDATES MUST BE MADE TO THIS JCL BEFORE *
//* IT CAN BE EXECUTED: *
//* *
//* 1. UPDATE THE JOBCARD TO REFLECT CORRECT SITE INFORMATION *
//* 2. REVIEW THAT THE STEPLIB DD STATEMENT CONCATENATION CONTAINS =
//* THE NAME OF THE AUTHORIZED LIBRARY CONTAINING THE SAMPLE *
//* PROGRAM AND THE ENDEVOR DEFAULTS TABLE. *
//* 3. REVIEW THAT THE CONLIB DD STATEMENT CONCATENATION CONTAINS =
//* THE NAME OF THE LIBRARY CONTAINING THE ENDEVOR SOFTWARE. *
gy *
//STEP1 EXEC PGM=ENHAAPGM,REGION=4096K

//STEPLIB DD DISP=SHR,DSN=uprfx.uqual.AUTHLIB

// DD DISP=SHR,DSN=iprfx.iqual.AUTHLIB

//CONLIB DD DISP=SHR,DSN=iprfx.iqual.CONLIB

//SYSOUT DD SYSOUT==

//SYSPRINT DD SYSOUT=*

//BSTERR DD SYSOUT=+

//APIMSGS DD SYSOUT=x,

// DCB=(RECFM=FB,LRECL=133,BLKSIZE=13300)

//APIEXTR DD DSN=&&EXT1ELM,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(TRK, (5,5)),

// DCB=(RECFM=VB,LRECL=2048,BLKSIZE=22800)

//* TRACE FACILITY *
//*BSTAPI DD SYSOUT=#

//*EN$TRAPI DD SYSOUT=x

[] *mm e e e e e e e e *
//* PRINT EXTRACTED LIST OF ENVIRONMENTS
gy *

//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY

//SYSIN DD DUMMY
//SYSUT1 DD DSN=&&EXT1ELM,DISP=(0OLD,DELETE)
//SYSUT2 DD SYSOUT=x

Appendix A. Sample APl Programs A-11

A.5 Sample Element Action Function Call — ENHAEPGM

A.5 Sample Element Action Function Call — ENHAEPGM

The sample Assembler program, ENHAEPGM, illustrates the use of all the API
element action function calls. JCL to execute this program appears in A.5.2, “JCL to
Execute ENHAEPGM — BC1JEPGM”

A.5.1 Description

The source for this program is distributed with Endevor as member name
ENHAEPGM in the iprfx.iqual. SOURCE data set. The ENHAEPGM program
contains logic to execute each of the element action function calls supported by the
APL

Only source code is provided for this program. Review the source and make any
necessary modifications. In order for this program to operate, the name of the input
and output data sets must be modified and the name of the member being ADDed and
UPDATEd must exist in the input library. Also, the inventory location information
(ENV, SYS, SYSSUB, etc.) must exist.

You must assemble and link-edit this module into uprfx.uqual. AUTHLIB before
attempting to execute it. There are no restrictions on the linkage editor
AMODE/RMODE parameters. AMODE=31,LRMODE=ANY is recommended.

A.5.2 JCL to Execute ENHAEPGM — BC1JEPGM

The JCL in this section is distributed with Endevor as member name BC1JEPGM in
the iprfx.iqual.JCL data set. This job can be tailored and used to execute the
ENHAEPGM program. This sample API program must be executed from an
authorized library.

The JCL to execute program ENHAEPGM appears below. In this example, a series of
DD names describes the message, input and response files defined in the sample
program. Also, the optional trace DD statements are coded.

A-12 API| Guide

A.5 Sample Element Action Function Call — ENHAEPGM

//*(JOBCARD)
gy *
A

//* (C) 2002 COMPUTER ASSOCIATES INTERNATIONAL, INC.
/1%

//* NAME: BC1JEPGM

/1%
/1% PURPOSE - THIS IS SAMPLE JCL TO INVOKE THE ASSEMBLER
/% SAMPLE API ELEMENT ACTION PROGRAM: ENHAEPGM
/1*

/1% THE FOLLOWING UPDATES MUST BE MADE TO THIS JCL BEFORE

/1% IT CAN BE EXECUTED:

/1%

/1% 1. UPDATE THE JOBCARD TO REFLECT CORRECT SITE INFORMATION

/% 2. REVIEW THAT THE STEPLIB DD STATEMENT CONCATENATION CONTAINS

F % % ok kX ok % X ok 3k X X X X X kX X X X X F X

//* THE NAME OF THE AUTHORIZED LIBRARY CONTAINING THE SAMPLE
//* PROGRAM AND THE ENDEVOR DEFAULTS TABLE.

//* 3. REVIEW THAT THE CONLIB DD STATEMENT CONCATENATION CONTAINS
//* THE NAME OF THE LIBRARY CONTAINING THE ENDEVOR SOFTWARE.
//* 4. THE SAMPLE PROGRAM EXPECTS SEVERAL MEMBERS TO EXIST IN THE
//* UPRFX.UQUAL.SRCLIB. MAKE SURE THIS LIBRARY EXISTS AT YOUR
//* SITE OR CHANGE THE DATA SET NAME IN THIS JCL TO ONE THAT
//* DOES AND CREATE 3 COPYBOOK MEMBERS IN THIS LIBRARY;

//* APIB--BASE COPYBOOK

//* APIU--BASE COPYBOOK WITH SEVERAL MODIFICATIONS

//* APIR--COPY OF APIB FOR DELETE AND RETRIEVE ACTIONS
g *

//STEP1 EXEC PGM=NDVRC1,PARM='ENHAEPGM',REGION=4096K

//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB (C1DEFLTS, USER PGM)
// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB (AUTH PGMS)

//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.LOADLIB (SOFTWARE)

Appendix A. Sample APl Programs A-13

A.5 Sample Element Action Function Call — ENHAEPGM

//***

/1% API MESSAGES DD STMT FROM THE AACTL_MSG_DD CONTROL FIELD.
//* IF NOT SPECIFIED, DD NAME DEFAULT OF APIMSGS IS USED.
A EACH REQUEST SHOULD HAVE A UNIQUE MESSAGE FILE.

[[% ke e ok ok e ke ok ok ek ek ok ko ok ok e ko ko ook ek ek ok ok ok ok ko ok ook ek ok ok ok ek ok ok
//APIMSGS DD SYSOUT=+,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//ADDMSG DD SYSOUT=*

//DELMSG DD SYSOUT=*

//GENMSG DD SYSOUT=*

//MOVMSG DD SYSOUT=x

//PREMSG DD SYSOQUT=*

//PRMMSG DD SYSOQUT=*

//RETMSG DD SYSOUT=*

//SIGMSG DD SYSOUT=*

//TRAMSG DD SYSOUT=*

//UPDMSG DD SYSOUT=*

[[% ke e ek ok e ke ok ok ek ek ok ko ok ok e ko ko ook ek ek ok ok ok ko ok ook ek ok ok ok ek ok ok
//* TO/FROM DD NAMES SPECIFIED ON THE ELEMENT ACTION REQUESTS

[[k ek ok ok ok ok ek ok ok ke ok ok ok ok ok ok ok ok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ko
//ADDDDNMI DD DISP=SHR,DSN=UPRFX.UQUAL.SRCLIB

//PREDDNMO DD SYSOUT=+,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)

//PRMDDNMI DD DISP=SHR,DSN=UPRFX.UQUAL.SRCLIB

//PRMDDNMO DD SYSOQUT=+

//RETDDNMO DD DISP=SHR,DSN=UPRFX.UQUAL.SRCLIB

//UPDDDNMI DD DISP=SHR,DSN=UPRFX.UQUAL.SRCLIB

//***

/1% OPTIONAL TRACE DD STATEMENTS
//***
//BSTERR DD SYSOUT=+ (ENDEVOR TRACE)

//BSTAPI ~ DD SYSOUT=* (API DIAGNOSTIC TRACE)
//ENSTRAPI DD SYSOUT=+ (APT INTERNAL TRACE)

A-14 API| Guide

A.6 Sample List Package Action Function Call — ENHAPLST

A.6 Sample List Package Action Function Call —
ENHAPLST

This Assembler program, ENHAPLST, illustrates the use of all the list package action
functions of the API. JCL to execute this program appears in A.6.2, “JCL to Execute
ENHAPLST — BC1JPLST.”

A.6.1 Description

This program operates at your site with minor modifications. As delivered, a package
id of PKGIDVALUE is specified for each of the package id request fields. You need
to modify these values to a package id that exists at your site. The request for the
package header information specifies a package id value of PKGID* to illustrate the
use of wildcarding. We recommend you modify this value to be a partially wildcarded
value that causes a reasonable number of packages to be selected.

A.6.2 JCL to Execute ENHAPLST — BC1JPLST

The JCL in this section is distributed with Endevor as member name BC1JPLST in the
iprfx.iqual. JCLLIB data set. This job shows how to execute program ENHAPLST.

In this example, NDVRCI is executed and passes a parameter containing the name of
the API test program, ENHAPLST. You can also invoke Endevor API applications
this way. This API program uses a different message and response file for each
request (aaaMSG and aaalL.ST, where aaa is the function such as LPK, LCA, and
LSC). The trace DD statements, BSTAPI and EN$TRAPI also exist, but are
commented out.

//*JOBCARD GOES HERE

gy *
/1+*

/1* (C) 2002 COMPUTER ASSOCIATES INTERNATIONAL, INC.

/1*

//* NAME: BC1JPLST *

//* *
//* PURPOSE - THIS IS SAMPLE JCL TO INVOKE THE ASSEMBLER *
/1* SAMPLE API PACKAGE ACTION PROGRAM: ENHAPLST *

//* THE PROGRAM NAME AND THE REQUIRED DD STATEMENTS WILL=*
//* VARY SINCE THIS IS A USER WRITTEN PROGRAM. *
//* *
//* THE FOLLOWING UPDATES MUST BE MADE TO THIS JCL BEFORE *
/1* IT CAN BE EXECUTED: *

//* *
/1* 1. UPDATE THE JOBCARD TO REFLECT CORRECT SITE INFORMATION *
//* 2. REVIEW THAT THE STEPLIB DD STATEMENT CONCATENATION CONTAINS =*
//* THE NAME OF THE AUTHORIZED LIBRARY CONTAINING THE SAMPLE *
/1* PROGRAM AND THE ENDEVOR DEFAULTS TABLE. *
//* 3. REVIEW THAT THE OPTIONAL LIST DATA SET NAMES AND THEIR *
/1* ATTRIBUTES ARE CORRECT. *
[K mm e e e e e e e e *

Appendix A. Sample APl Programs A-15

A.6 Sample List Package Action Function Call — ENHAPLST

//STEP1 EXEC PGM=NDVRC1,PARM="ENHAPLST',REGION=4096K
//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB (C1DEFLTS,USER PGMS)

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB (AUTH PGMS)
//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB (SOFTWARE)
A API MESSAGES DD STMT FROM THE USER CONTROL BLOCK

//*APIMSGS DD SYSOUT=+,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//*APILST DD DISP=(,CATLG,DELETE),DSN=UPRFX.UQUAL.APIMSGS,
/] UNIT=PDISK,SPACE=(TRK, (2,1),RLSE),

/% DCB= (RECFM=VB, LRECL=2048,BLKSIZE=0) ,DSORG=PS
//LAPMSG DD SYSOUT=+

//LAPLST ~ DD DISP=SHR,DSN=UPRFX.UQUAL.APILAPP

//LBKMSG DD SYSOUT=#

//LBKLST DD DISP=SHR,DSN=UPRFX.UQUAL.APILBKO

//LCAMSG DD SYSOUT=*

//LCALST DD DISP=SHR,DSN=UPRFX.UQUAL.APILCAS

//LCOMSG DD SYSOUT=+

//LCOLST ~ DD DISP=SHR,DSN=UPRFX.UQUAL.APILCOR

//LSCMSG DD SYSOUT=+

//LSCLST ~ DD DISP=SHR,DSN=UPRFX.UQUAL.APILSCL

//LSUMSG DD SYSOUT=+

//LSULST DD DISP=SHR,DSN=UPRFX.UQUAL.APILSUM

A ERROR AND TRACE DD STATEMENTS

//BSTERR DD SYSOUT=* (ENDEVOR ERROR LOG)
//*ENSTRAPI DD SYSOUT==* (API INTERNAL TRACE)
//*BSTAPI ~ DD SYSOUT=* (API DIAGNOSTIC TRACE)

A-16 API Guide

A.7 Sample Update Package Action Function Call — ENHAPUPD

A.7 Sample Update Package Action Function Call —
ENHAPUPD

This Assembler program, ENHAPUPD, illustrates the use of all the update type
package action functions of the API. This includes approve a package, backout and
backin a package, commit a package, delete a package, deny a package, create, modify
and delete a correlation, execute a package and reset a package. JCL to execute this
program appears in A.7.2, “JCL to Execute ENHAPUPD — BC1JPUPD.”

A.7.1 Description

This program operates at your site with minor modifications. As delivered, a package
id of PKGIDVALUE is specified for each of the package id request fields. You need
to modify these values to a package id that exists at your site.

A.7.2 JCL to Execute ENHAPUPD — BC1JPUPD

The JCL in this section is distributed with Endevor as member name BC1JPUPD in
the iprfx.iqual. JCLLIB data set. This job shows how to execute program
ENHAPUPD.

In this example, NDVRCI is executed and passes a parameter containing the name of
the API test program, ENHAPUPD. You can also invoke Endevor API applications
this way. This API program uses a different message file for each request (aaaMSG,
where aaa is the function PAP, PBI, PBO, PCA, PCM, PCO, PDE, PDN, PEX and
PRE). The CIEXMSGS DD statement is required to log the Endevor messages
created by the execute package action. The trace DD statements, BSTAPI and
ENS$TRAPI also exist, but are commented out.

//*JOBCARD GOES HERE

Y Ty U USSRy S S U USSRy ————— *
/1%

//* (C) 2002 COMPUTER ASSOCIATES INTERNATIONAL, INC.

/1%

//* NAME: BC1JPUPD *

//* *
//* PURPOSE - THIS IS SAMPLE JCL TO INVOKE THE ASSEMBLER *
//* SAMPLE API PACKAGE ACTION PROGRAM: ENHAPUPD. =+

//* THE PROGRAM NAME AND THE REQUIRED DD STATEMENTS WILL=*
//* VARY SINCE THIS IS A USER WRITTEN PROGRAM. *
//* *
//* THE FOLLOWING UPDATES MUST BE MADE TO THIS JCL BEFORE *
//* IT CAN BE EXECUTED: *

//* *
//* 1. UPDATE THE JOBCARD TO REFLECT CORRECT SITE INFORMATION *
//* 2. REVIEW THAT THE STEPLIB DD STATEMENT CONCATENATION CONTAINS =
//* THE NAME OF THE AUTHORIZED LIBRARY CONTAINING THE SAMPLE *
/1* PROGRAM AND THE ENDEVOR DEFAULTS TABLE. *
//* 3. REVIEW THAT THE CONLIB DD STATEMENT CONCATENATION CONTAINS =
//* THE NAME OF THE LIBRARY CONTAINING THE ENDEVOR SOFTWARE. *

Appendix A. Sample APl Programs A-17

A.7 Sample Update Package Action Function Call — ENHAPUPD

//STEP1 EXEC PGM=NDVRC1,PARM="ENHAPUPD',REGION=4096K
//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB (C1DEFLTS,USER PGMS)

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB (AUTH PGMS)
//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB (SOFTWARE)
/1% API MESSAGES DD STMT FROM THE USER CONTROL BLOCK
//*APIMSGS DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//PAPMSG DD SYSOUT=* (APPROVE)

//PBOMSG DD SYSOUT=x (BACKOUT)

//PBIMSG DD SYSOUT=+ (BACKIN)

//PCAMSG DD SYSOUT=x (CAST)

//PCMMSG DD SYSOUT=x (COMMIT)

//PCOMSGC DD SYSOUT=+ (CREATE CORRELATION)
//PCOMSGD DD SYSOUT=x (DELETE CORRELATION)
//PCOMSGM DD SYSOUT== (MODIFY CORRELATION)
//PDEMSG DD SYSOUT=* (DELETE)

//PDNMSG DD SYSOUT== (DENY)

//PEXMSG DD SYSOUT=* (EXECUTE)

//PREMSG DD SYSOUT=* (RESET)

/1% ENDEVOR EXECUTE PACKAGE ACTION MESSAGES DD STMT
//C1EXMSGS DD SYSOUT=x

A ERROR AND TRACE DD STATEMENTS

//BSTERR DD SYSOUT=* (ENDEVOR ERROR LOG)
//*ENSTRAPI DD SYSOUT==* (API INTERNAL TRACE)
//*BSTAPI ~ DD SYSOUT=* (API DIAGNOSTIC TRACE)

A-18 API Guide

A.8 Sample Inventory List Function Call — ENTBJAPI

A.8 Sample Inventory List Function Call — ENTBJAPI

This program allows you to specify input statements to execute inventory list function
calls. Based on user input, it builds control, request, and response structures and
executes the API to process the function calls. It writes the responses to a response
file. JCL to execute this program appears in A.8.2, “JCL to Execute ENTBJAPI —
BC1JAAPL.”

A.8.1 Description

See comment statements in the JCL stream for a full description of each available API
inventory list function call. Each function call is made up of a control structure
statement, a request structure statement, and a RUN statement. The API structures are
created from the control structure statement and the request structure statement. The
RUN statement executes the API. More than one function call can be executed in one
job by specifying a set of statements for each function call. If you are issuing a
request to shutdown the API server only, a request structure statement is not required,
as illustrated in the JCL stream.

The QUIT statement should be the last statement coded in the input stream, which
terminates the program.

A.8.2 JCL to Execute ENTBJAPI — BC1JAAPI

The JCL in this section is distributed with Endevor as member name BC1JAAPI in the
iprfx.iqual.JCL data set. This job shows how to execute program ENTBJAPI. This
program is distributed as a load module only.

The JCL to execute program ENTBJAPI appears below. Look at the JCL comment
statements that describe updates you need to make before you execute this JCL stream.

In this example, DD name, MSG3FILE, describes the message response file and DD
name, EXT1ELM, describes the response file for the API responses.

Appendix A. Sample APl Programs A-19

A.8 Sample Inventory List Function Call — ENTBJAPI

//% (COPY JOBCARD)

//***

/1%

A BC1JAAPT - THIS IS SAMPLE JCL TO INVOKE THE ASSEMBLER
VERSION OF OUR SAMPLE API ENDEVOR APPLICATION

/1%
/1%
/1%

/1% THE FOLLOWING UPDATES MUST BE MADE TO THIS JCL BEFORE

PROGRAM: ENTBJAPI

/1% IT CAN BE EXECUTED:

/1*

/1* 1. UPDATE THE JOBCARD TO REFLECT CORRECT SITE INFORMATION
/1% 2. REVIEW THAT THE STEPLIB AND CONLIB DATA SET NAMES ARE

//* CORRECT.

//* - uprfx.uqual.AUTHLIB
/1* - iprfx.iqual.AUTHEXT
/1* - iprfx.iqual.CONLIB

/1% 3. ADD THE NECESSARY DD STATEMENTS NEEDED TO PROCESS ANY
//* ADDITIONAL API LIST REQUESTS.

//* TO HANDLE ONLY ONE LIST REQUEST.

//* 4. MODIFY THE PROGRAMS DATA INPUT IN STEP1. AS AN EXAMPLE, THE
/1% INPUT DATA HAS A SINGLE ELEMENT EXTRACT REQUEST.

CURRENTLY THIS JOB IS SETUP

L S I R I S N S R R

//***

//STEP1 EXEC PGM=NDVRC1,PARM="'ENTBJAPI',DYNAMNBR=1500,REGION=4096K

//STEPLIB DD
// DD
//CONLIB DD
//SYSOUT DD
//SYSPRINT DD
//BSTERR DD
//BSTAPI DD
//MSG3FILE DD
//

//

//EXT1ELM DD
//

//

//SYSIN DD

DSN=uprfx.uqual .AUTHLIB,DISP=SHR
DSN=iprfx.iqual.AUTHEXT,DISP=SHR
DSN=iprfx.iqual.CONLIB,DISP=SHR
SYSOUT=+

SYSOUT=+

SYSOUT=*

SYSOUT=*
DSN=&8MSG3FILE,DISP=(NEW,PASS),
UNIT=SYSDA,SPACE=(TRK, (5,5)),
DCB=(RECFM=FB,LRECL=133,BLKSIZE=13300)
DSN=&&EXT1ELM,DISP=(NEW,PASS),
UNIT=SYSDA,SPACE=(TRK, (5,5)),
DCB=(RECFM=VB, LRECL=2048,BLKSIZE=22800)
*

A-20 API Guide

A.8 Sample Inventory List Function Call — ENTBJAPI

* RECORD ID IS IN COLUMNS 1-5

*

T iy P Y i LTy | gupnpup S S,
x%%%x AACTL = CONTROL STRUCTURE INFORMATION

* V - COLUMN 6 = SHUTDOWN FLAG STRUCTURE

* VVVVVVVV - COLUMN 7-14 IS THE MSG FILE DDNAME

* VVVVVVVV - COLUMN 15-22 OUTPUT DATA FILE DDNAME

Ty Sy | Y Y |y -

FOR MANY REQUESTS, THE FOLLOWING SETTINGS ARE APPROPRIATE
V - COLUMN 6 = PATH SETTING

" ' FOR LOGICAL

'"L' FOR LOGICAL

'"P' FOR PHYSICAL

COLUMN 7 = RETURN SETTING

" ' FOR FIRST FOUND

"F' FOR FIRST FOUND

'"A' FOR ALL FOUND

V - COLUMN 8 = SEARCH SETTING

" ' FOR FIRST

'"A'" FOR ALL

'B' FOR BETWEEN

"E' FOR NEXT

'N' FOR NO

'R' FOR RANGE

- COLUMN 9 = UNUSED

< i u nononon

£ % % ok % X ok % X ok X X X F X X X X

T Y Y S | ppp S
*%%%%x ALENV = LIST ENVIRONMENT STRUCTURE INFORMATION
V - COLUMN 6 = PATH SETTING
V - COLUMN 7 = RETURN SETTING
V - COLUMN 8 = SEARCH SETTING
V - COLUMN 9 = UNUSED
VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME
V - COLUMN 18 = STAGE ID
VVVVVVVV - COLUMN 19-26 = TO ENVIRONMENT NAME
V - COLUMN 27 = TO STAGE ID
NOTE: IF BETWEEN/RANGE SETTINGS ARE USED, YOU NEED TO SPECIFY
TO-ENV AND TO-STAGE, OTHERWISE LEAVE BLANK.
T Ty iy S Y LTy | Gy S g
*x%*xx ALSTG = LIST STAGE STRUCTURE INFORMATION
V - COLUMN 6 = PATH SETTING
V - COLUMN 7 = RETURN SETTING
V - COLUMN 8 = SEARCH SETTING
V - COLUMN 9 = UNUSED
VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME
V - COLUMN 18 = STAGE ID
VVVVVVVV - COLUMN 19-26 = TO ENVIRONMENT NAME
V - COLUMN 27 = TO STAGE ID
NOTE: IF BETWEEN/RANGE SETTINGS ARE USED, YOU NEED TO SPECIFY
TO-ENV AND TO-STAGE, OTHERWISE LEAVE BLANK.
T Ty JUppR i Sy P Y e g -

£ % X ok X X ok X X %

£ % X ok X X ok X X %

Appendix A. Sample APl Programs A-21

A.8 Sample Inventory List Function Call — ENTBJAPI

*x%%x ALSYS = LIST SYSTEM STRUCTURE INFORMATION
V - COLUMN 6 = PATH SETTING
V - COLUMN 7 = RETURN SETTING
V - COLUMN 8 = SEARCH SETTING
V - COLUMN 9 = UNUSED
VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME
V - COLUMN 18 = STAGE ID
VVVVVVVV - COLUMN 19-26 SYSTEM NAME
VVVVVVVV - COLUMN 27-34 = TO ENV NAME
V - COLUMN 35 = TO STAGE ID
NOTE: IF BETWEEN/RANGE SETTINGS ARE USED, YOU NEED TO SPECIFY
TO-ENV AND TO-STAGE, OTHERWISE LEAVE BLANK.
T Yy [/Uy R S P ., (U —— -
#*xx% ALSBS = LIST SUBSYSTEM STRUCTURE INFORMATION
V - COLUMN 6 = PATH SETTING
V - COLUMN 7 = RETURN SETTING
V - COLUMN 8 = SEARCH SETTING
V - COLUMN 9 = UNUSED
VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME
V - COLUMN 18 = STAGE ID
VVVVVVVV - COLUMN 19-26 SYSTEM NAME
VVVVVVVV - COLUMN 27-34 SUBSYSTEM NAME
VVVVVVVV - COLUMN 35-42 = TO ENV NAME
V - COLUMN 43 = TO STAGE ID
[Ty Yy [/Uy R S P ., (U ——— -
#*xx% ALSIT = LIST SITE STRUCTURE INFORMATION
T e Ty S
#x%%%x ALELM = LIST ELEMENT STRUCTURE INFORMATION

* Ok ¥ ok kX Xk X Xk

* ok ¥ X %k X Xk X X

* V - COLUMN 6 = PATH SETTING

* V - COLUMN 7 = RETURN SETTING

* V - COLUMN 8 = SEARCH SETTING

* V - COLUMN 9 = UNUSED

* VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME

* V - COLUMN 18 = STAGE ID

* VVVVVVVV - COLUMN 19-26 SYSTEM NAME

* VVVVVVVV - COLUMN 27-34 SUBSYSTEM NAME
* COLUMN 35-44 = ELEMENT NAME VVVVVVVVVV

* COLUMN 45-52 = TYPE NAME VVVVVVVYV

* COLUMN 53-60 = TO-ENV NAME VVVVVVVV

* COLUMN 61 = TO-STAGE ID)

* COLUMN 62-71 = THRU-ELEMENT NAME VVVVVVVVVY
*

*

NOTE: IF BETWEEN/RANGE SETTINGS ARE USED, YOU NEED TO SPECIFY
TO-ENV AND TO-STAGE, OTHERWISE LEAVE BLANK.

A-22 API| Guide

A.8 Sample Inventory List Function Call — ENTBJAPI

. Sy JEy
*#*xxx% ALPGR = LIST PROCESSOR GROUP STRUCTURE INFORMATION

* V - COLUMN 7 = RETURN SETTING

* VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME

* V - COLUMN 18 = STAGE ID

* VVVVVVVV - COLUMN 19-26 SYSTEM NAME

* VVVVVVVV - COLUMN 27-34 TYPE NAME

* VVVVVVVV - COLUMN 35-42 PROC GROUP
Ty Sy | Y Y |y -
*x%*x%x ALDSN = LIST DATA SET STRUCTURE INFORMATION

* V - COLUMN 7 = RETURN SETTING

* VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME

* V - COLUMN 18 = STAGE ID

* VVVVVVVV - COLUMN 19-26 SYSTEM NAME

* VV - COLUMN 27-28 DATA SET ID

T Ty N e Ty | gy S SR
x%%x ALAGR = LIST APPROVER GROUP STRUCTURE INFORMATION

* V - COLUMN 7 = RETURN SETTING

* VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME

* VVVVVVVV - COLUMN 18-25 APPROVER GROUP NAME

T gy SRy, Iy Py o Ty | gy Sy S
x%%%x ALAGJ = LIST APPROVER JUNCTION STRUCTURE INFORMATION

* V - COLUMN 7 = RETURN SETTING

* VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME

* VVVVVVVVVVVVVVVVVVVVVVVVV - COLUMN 18-42 APPR JUNCTION
* VVVVVVVYV - COLUMN 18-25 SYSTEM

* VVVVVVVY - COLUMN 26-33 SUBSYSTEM

* VVVVVVVV - COLUMN 34-41 TYPE

* V - COLUMN 34-41 STAGE NUM

TR Iy P, F - S ——" S ——" T —" " S—_———— -
%%%% AEELM = EXTRACT ELEMENT STRUCTURE INFORMATION
V - COLUMN 6 = FORMAT SETTING
" ' FOR NO FORMAT, JUST EXTRACT ELEMENT
'B' FOR ENDEVOR BROWSE DISPLAY FORMAT
'C' FOR ENDEVOR CHANGE DISPLAY FORMAT
'"H' FOR ENDEVOR HISTORY DISPLAY FORMAT
COLUMN 7 = RECORD TYPE SETTING
'"E' FOR ELEMENT
'C' FOR COMPONENT
VVVVVVVV - COLUMN 10-17 ENVIRONMENT NAME
V - COLUMN 18 = STAGE ID
VVVVVVVV - COLUMN 19-26 SYSTEM NAME
VVVVVVVV - COLUMN 27-34 SUBSYSTEM NAME
ELEMENT NAME VVVVVVVVVV
TYPE NAME VVVVVVVV
VERSION vV
LEVEL Vv

COLUMN 35-44
COLUMN 45-52
COLUMN 53-54
COLUMN 55-56

* Ok % F 3k X F 3k X X X X X X X X

Appendix A. Sample APl Programs A-23

A.8 Sample Inventory List Function Call — ENTBJAPI

ET Y /R N JE S V- S S —— S —_—— -
* EXTRACT AN ELEMENT WITH NO FORMAT - CURRENT VERSION & LEVEL
AACTL MSG3FILEEXT1ELM

AEELM E INT INDVRMVS BASE BC1PFPVL ASMPGM
RUN

* LAST CALL, ENSURE THAT THE API SERVER IS SHUTDOWN.
AACTLY

RUN

QUIT

/1*

//* PRINT ANY MESSAGES

//STEP2 EXEC PGM=IEBGENER

//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//SYSUT1 DD DSN=&&MSG3FILE,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT==*

/1%

//* PRINT EXTRACTED ELEMENT

//STEP3 EXEC PGM=IEBGENER

//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//SYSUT1 DD DSN=&&EXT1ELM,DISP=(0OLD,DELETE)
//SYSUT2 DD SYSOUT=x

A-24 API| Guide

Index

Special Characters
"From" Endevor location, last 2-37

* 122

% 122

A

AACTL control structure fields 2-3
AACTL_MSG_DDN file 4-3
AACTL_REASON field 1-17, 3-3
AACTL_RTNCODE field 1-17, 3-2
Actions
add element 2-11
build generate SCL 2-106
delete element 2-13
generate element 2-24
last for list element 2-33
list
element options 2-27
package summary 2-72
move element 2-41
print
element 2-43
member element 2-45
retrieve element 2-46
sample for elements 4-4
signin element 2-48
submit package 2-97
transfer element 2-50
update element 2-53
Add
data set, last 2-35
element action 2-11
AEADD_RQ request structure fields 2-11
AEDEL_RQ request structure fields 2-13
AEELM_RQ request structure fields 2-16
AEELM_RS response structure fields 2-17
AEGEN_RQ request structure fields 2-24

AEMOV_RQ request structure fields 2-41
AEPRE_RQ request structure fields 2-43
AEPRM_RQ request structure fields 2-45
AERET_RQ request structure fields 2-46
AESIG_RQ request structure fields 2-48
AETRA_RQ request structure fields 2-50
AEUPD_RQ request structure fields 2-53
ALAGIJ_RQ request structure fields 2-102
ALAGIJ_RS response structure fields 2-103
ALAGR_RQ request structure fields 2-100
ALAGR_RS response structure fields 2-100
ALAPP_RQ request structure fields 2-77
ALBKO_RQ request structure fields 2-79
ALBKO_RS request structure fields 2-79
ALCAS_RQ request structure fields 2-81
ALCAS_RS response structure fields 2-81
ALCMP_RQ request structure fields 2-104
ALCMP_RS response structure fields 2-107
ALCOR_RQ request structure fields 2-82
ALCOR_RS response structure fields 2-82
ALDIR_RQ request structure fields 2-112
ALDIR_RS response structure fields 2-113
ALDSN_RQ request structure fields 2-110
ALDSN_RS response structure fields 2-111
ALELB_RS fields 2-38

ALELM_RQ request structure fields 2-26
ALELM_RS response structure fields 2-31
ALELX_RS fields 2-40

ALENV_RQ request structure fields 2-115
ALENV_RS response structure fields 2-116
AllFusion Harvest CM packages 2-55
ALPGR_RQ request structure fields 2-118
ALPGR_RS response structure fields 2-119
ALPKB_RS response structure fields 2-91
ALPKG_RQ request structure fields 2-84
ALPKG_RS response structure fields 2-88
ALSBS_RQ request structure fields 2-127
ALSBS_RS response structure fields 2-128

Index X-1

ALSCL_RQ request structure fields 2-93
ALSCL_RS response structure fields 2-93
ALSIT_RQ request structure fields 2-121
ALSIT_RS response structure fields 2-121
ALSTG_RQ request structure fields 2-125
ALSTG_RS response structure fields 2-126
ALSUM_RQ request structure fields 2-72
ALSUM_RS response structure fields 2-72
ALSYS_RQ request structure fields 2-130
ALSYS_RS response structure fields 2-131
ALTYP_RQ request structure fields 2-133
ALTYP_RS response structure fields 2-134
APAPP_RQ request structure fields 2-59
APBKI_RQ request structure fields 2-60
APBKO_RQ request structure fields 2-61
APCAS_RQ request structure fields 2-62
APCOM_RQ request structure fields 2-65
APCOR_RQ request structure fields 2-95
APDEF_RQ request structure fields 2-66
APDEL_RQ request structure fields 2-69
APDEN_RQ request structure fields 2-70
APEXE_RQ request structure fields 2-71
API Diagnostic Trace 4-2
API Internal Trace 4-2
APIS$INIT macro 1-12
Approve package 2-59
Approver group, list 2-100
Approvers, list package 2-77
APSUB_RQ request structure fields 2-97
Architecture of API 1-4
Assembler
calling API from 1-15
initializing programs 1-12
macros
about 1-7
ENHAAREB 2-10
ENHAEADD 2-11
ENHAEDEL 2-13
ENHAEELM 2-15
ENHAEGEN 2-24
ENHAEMOV 2-41
ENHAEPRE 2-43
ENHAEPRM 2-45
ENHAERET 2-46
ENHAESIG 2-48
ENHAETRA 2-50
ENHAEUPD 2-53
ENHALAGJ 2-102
ENHALAGR 2-100
ENHALAPP 2-77
ENHALBKO 2-79
ENHALCAS 2-81

Assembler (continued)

macros (continued)
ENHALCMP 2-104
ENHALCOR 2-82
ENHALDIR 2-112
ENHALDSN 2-110
ENHALELM 2-26
ENHALENV 2-115
ENHALPGR 2-118
ENHALPKG 2-84
ENHALSBS 2-127
ENHALSCL 2-93
ENHALSIT 2-121
ENHALSTG 2-125
ENHALSUM 2-72
ENHALSYS 2-130
ENHALTYP 2-133
ENHAPAPP 2-59
ENHAPBKI 2-60
ENHAPBKO 2-61
ENHAPCAS 2-62
ENHAPCOM 2-65
ENHAPCOR 2-95
ENHAPDEF 2-66
ENHAPDEL 2-69
ENHAPDEN 2-70
ENHAPEXE 2-71
ENHAPRES 2-96
ENHAPSUB 2-97

sample programs A-10

B

Backin Package 2-60
Backout

list packages 2-79

package 2-61
Base

element 2-33

structure 2-31
BCIJAAPIJCL A-19
BCI1JAPGM JCL A-10
BCIJEPGM JCL A-12
BCIJPLST JCL A-15
BC1JPUPD JCL A-17
BCIJRAPI JCL A-7
BC1PAPI diagnostic trace 4-9
Browse record layout

component extract 2-21

element extract 2-19

X-2 API Guide

Build
generate action SCL 2-106
list directory 2-112

C

CIMSGS!1 DD statement 2-68, 4-3
Calling API 1-15
Calls, function 2-8
Cast
list packages 2-81
packages 2-62
CCID 2-13, 2-24, 2-43, A-5
Change record layout
component extract 2-22
element extract 2-19
COBOL
calling API from 1-16
CCIDRPT1 sample program A-5
copybooks
about 1-7
ECHAAREB 2-10
ECHAEADD 2-11
ECHAEDEL 2-13
ECHAEELM 2-15
ECHAEGEN 2-24
ECHAEMOV 2-41
ECHAEPRE 2-43
ECHAEPRM 2-45
ECHAERET 2-46
ECHAESIG 2-48
ECHAETRA 2-50
ECHAEUPD 2-53
ECHALAGJ 2-102
ECHALAGR 2-100
ECHALAPP 2-77
ECHALBKO 2-79
ECHALCAS 2-81
ECHALCMP 2-104
ECHALCOR 2-82
ECHALDIR 2-112
ECHALDSN 2-110
ECHALELM 2-26
ECHALENV 2-115
ECHALPGR 2-118
ECHALPKG 2-84
ECHALSBS 2-127
ECHALSCL 2-93
ECHALSIT 2-121
ECHALSTG 2-125
ECHALSUM 2-72
ECHALSYS 2-130

COBOL (continued)
copybooks (continued)
ECHALTYP 2-133
ECHAPAPP 2-59
ECHAPBKI 2-60
ECHAPBKO 2-61
ECHAPCAS 2-62
ECHAPCOM 2-65
ECHAPCOR 2-95
ECHAPDEF 2-66
ECHAPDEL 2-69
ECHAPDEN 2-70
ECHAPEXE 2-71
ECHAPRES 2-96
ECHAPSUB 2-97
field names 1-12
initializing structures in 1-12
templates for function calls 1-16
Codes
debugging help 4-2
reason 1-17
return 1-17, 3-2
Comment location data for list components 2-105
Commit package 2-65
Components
data 2-15
list/where-used 2-104
lists 2-34
validate 2-62
CONAPI Utility 1-4
Control structure 1-5, 2-3
Copybooks, COBOL 1-7
Correlation
list package 2-82
package 2-95
Create packages 2-66
CSECT build list 2-112

D

Data

available for list package locations 2-73
comment location for list components 2-105
element location for list components 2-104
extract component 2-15
member location for list components 2-105
object location for list components 2-105
set

last add or update 2-35

list 2-110
trace 4-2

Index X-3

Date formats, response structure 1-6
DD statements 4-3
Debugging help 4-2, 4-10
Define package
function call 2-66
sample report 4-3
Delete
element action 2-13
packages 2-69
Delta
component list 2-34
element 2-33
Deny packages 2-70
Diagnostic Trace 4-2, 4-9
Directory list 2-112

E
ECHAACTL initializing 1-12
Elements
action sample report 4-4
actions not supported 1-2
add 2-11
base 2-33
delete 2-13
delta (last level) 2-33
extract 2-15
generate 2-24
last move 2-35
list 2-26
location data for list components 2-104
long names 2-10
move action 2-41
package last executed against 2-37
print
action 2-43
member action 2-45
processor execution 2-36
record layouts 2-17

retrieve
action 2-46
last 2-36

sample function call A-12
signin action 2-48
transfer action 2-50
update 2-53
EN$TRAPI internal trace 4-10
ENASNDVR 1-4
Endevor location, last "from" 2-37
ENHAACTL initializing 1-12

ENHAAPGM sample program A-10
ENHAEPGM A-12
ENHAPLST A-15
ENHAPUPD A-17
ENTBJAPI A-19
Enterprise package function 2-55
Environment list
function call 2-115
sample A-10
Error messages 3-14
Execute
CCIDRPT1 A-7
ENHAAPGM A-10
ENHAEPGM A-12
ENHAPLST A-15
ENHAPUPD A-17
ENTBJAPI A-19
packages 2-71
Executing programs A-3
Execution
element processor 2-36
reports 4-3
window 2-62
Extension
records 2-31
request 2-10
Extract
component data 2-15
elements 2-15
function calls 1-6
list approver group information 2-102
Extraction types 2-15

F

Facilities, trace 4-2

Facility, diagnostic trace 4-9

Fields
AACTL control structure 2-3
AACTL_REASON 1-17, 3-3
AACTL_RTNCODE 1-17, 3-2
AEADD_RQ request structure 2-11
AEDEL_RQ request structure 2-13
AEELM_RQ request structure 2-16
AEELM_RS response structure 2-17
AEGEN_RQ request structure 2-24
AEMOV_RQ request structure 2-41
AEPRE_RQ request structure 2-43
AEPRM_RQ request structure 2-45
AERET_RQ request structure 2-46
AESIG_RQ request structure 2-48

X-4 API| Guide

Fields (continued)
AETRA_RQ request structure 2-50
AEUPD_RQ request structure 2-53
ALAGJ_RQ request structure 2-102
ALAGIJ_RS response structure 2-103
ALAGR_RQ request structure 2-100
ALAGR_RS response structure 2-100
ALAPP_RQ request structure 2-77
ALBKO_RQ request structure 2-79
ALBKO_RS request structure 2-79
ALCAS_RQ request structure 2-81
ALCAS_RS response structure 2-81
ALCMP_RQ request structure 2-104
ALCMP_RS response structure 2-107
ALCOR_RQ request structure 2-82
ALCOR_RS response structure 2-82
ALDIR_RQ request structure 2-112
ALDIR_RS response structure 2-113
ALDSN_RQ request structure 2-110
ALDSN_RS response structure 2-111
ALELB_RS 2-38
ALELM_RQ request structure 2-26
ALELM_RS response structure 2-31
ALELX_RS 2-40
ALENV_RQ request structure 2-115
ALENV_RS response structure 2-116
ALPGR_RQ request structure 2-118
ALPGR_RS response structure 2-119
ALPKB_RS response structure 2-91
ALPKG_RQ request structure 2-84
ALPKG_RS response structure 2-88
ALSBS_RQ request structure 2-127
ALSBS_RS response structure 2-128
ALSCL_RQ request structure 2-93
ALSCL_RS response structure 2-93
ALSIT_RQ request structure 2-121
ALSIT_RS response structure 2-121
ALSTG_RQ request structure 2-125
ALSTG_RS response structure 2-126
ALSUM_RQ request structure 2-72
ALSUM_RS response structure 2-72
ALSYS_RQ request structure 2-130
ALSYS_RS response structure 2-131
ALTYP_RQ request structure 2-133
ALTYP_RS response structure 2-134
APAPP_RQ request structure 2-59
APBKI_RQ request structure 2-60
APBKO_RQ request structure 2-61
APCAS_RQ request structure 2-62
APCOM_RQ request structure 2-65
APCOR_RQ request structure 2-95

Fields (continued)
APDEF_RQ request structure 2-66
APDEL_RQ request structure 2-69
APDEN_RQ request structure 2-70
APEXE_RQ request structure 2-71
APSUB_RQ request structure 2-97
enterprise package 2-55
Note for APDEF_RQ 2-68
Files
AACTL_MSG_DDN 4-3
HFS 2-10
message 1-18, 4-3
writing responses to output 1-19
Filters, output for list components 2-106
Formats
for dates in response structure 1-6
rectyp for list components 2-108
From structure 2-31
Full structure 2-31
Function
calls
about 2-8
element action samples A-12
list of 1-7
storing responses 1-6
enterprise package 2-55

G

Generate
action SCL 2-106
elements 2-24
Group
junctions, list approver 2-102
list
approver 2-100
processor 2-118

H

Header, list package 2-84

HFS files 2-10, 2-112

History record layout
component extract 2-23
element extract 2-20

Initializing API structures 1-12
Internal Trace 4-2, 4-10

Index X-5

Inventory list sample
function call A-19
report 4-5

ISPF package panels 2-57

J

JCL
BCIJAAPI A-19
BCIJAPGM A-10
BCIJEPGM A-12
BCIJPLST A-15
BC1JPUPD A-17
CCIDRPT1 A-7
Junctions, list approver group 2-102

L

Last
"from" Endevor location 2-37
action for list element 2-33
add data set 2-35
element move 2-35
level (element delta) 2-33
retrieved element 2-36
update data set 2-35
Layouts, record 2-17
List
approver group 2-100
component 2-34
components/where-used 2-104
data set 2-110
directory 2-112
elements 2-26
environment
function call 2-115
sample program A-10
inventory
function call sample A-19
sample report 4-5
package
action summary 2-72
approvers 2-77
backout 2-79
cast report 2-81
correlation 2-82
function call 2-72
header 2-84
sample function call A-15
SCL 2-93
processor group 2-118

List (continued)
sample reports for packages 4-5
site 2-121
stage 2-125
subsystem 2-127
system 2-130
type 2-133
Location
data for list components 2-104
last "from" Endevor 2-37
list package action summary, source 2-73
Logical mapping requests 2-8
Long names 2-10

M

Macros
APISINIT 1-12
Assembler 1-7
Map searching
ALAGJ_RQ 2-103
ALAGR_RQ request structure 2-100
Mapping requests 2-8
Masking, name 1-22
Master structure 2-31
Member
element action, print 2-45
location data for list components 2-105
Messages
error 3-14
file 1-18,4-3
Modify packages 2-66
Move
element action 2-41
last element 2-35

N

Name masking 1-22

Naming conventions structures 1-5
NDVRCI1 program A-3

No format record layout 2-18

Not supported actions 1-2

Note fields for APDEF_RQ 2-68

O

Object location data for list components 2-105

Options, list element action 2-27
Output
file, writing responses to 1-19
filters for list components 2-106

X-6 API Guide

Overrides 2-118

P

Packages
actions not supported 1-2
AllFusion Harvest CM 2-55
approve 2-59
approvers, list 2-77
backin 2-60
backout
function call 2-61
list function call 2-79
cast
function call 2-62
report, list 2-81
commit 2-65
correlation
function call 2-95
list function call 2-82
define
function call 2-66
sample 4-3
delete 2-69
deny 2-70
enterprise function 2-55
execute 2-71
header, list 2-84
last executed against element 2-37
list action

sample A-15
summary 2-72
reset 2-96

sample report for list 4-5
SCL, list 2-93
submit request 2-97
update
function call sample A-17
sample report 4-7
Panels
enterprise package 2-55
ISPF package 2-57
Physical mapping requests 2-8
Placeholder 1-22
Print
element action 2-43
member element action 2-45
Processor
execution, element 2-36
list group 2-118

Programs
CCIDRPTI COBOL A-5
ENASNDVR 14
executing A-3
initializing Assembler 1-12
NDVRCI A-3

R

Reason codes 1-17, 3-3
Record
extension 2-31
layouts 2-17
Rectyp formats for list components 2-108
Register
0 33
15 3-2
Reports
CCIDRPT1 sample program A-6
define package sample 4-3
element action sample 4-4
execution 4-3
inventory list sample 4-5
list package cast 2-81
sample for list package 4-5
update package sample 4-7

Request
extension 2-10, 2-112
mapping 2-8

structure 1-6
submit package 2-97
Request Extension
structure 1-6
Reset package 2-96
Response structure 1-6
Restrictions, enterprise package 2-57
Retrieve

element
action 2-46
data 2-15

last element 2-36
Return codes 1-17, 3-2

S

Samples
CCIDRPT1 COBOL program A-5
diagnostic trace 4-9
element action function call A-12
EN$TRAPI internal trace 4-10
ENHAAPGM A-10

Index X-7

Samples (continued) Trace (continued)

inventory list function call A-19 internal 4-10
list package action function call A-15 Transfer element action 2-50
reports 4-3 Type, list 2-133
update package function call A-17 Types, extraction 2-15
SCL
build generate action 2-106 U
fields 2-66
list package 2-93 Unsupported actions 1-2
Searching Update
ALAGJ_RQ 2-103 data set, last 2-35
ALAGR_RQ request structure 2-100 elements 2-53
list package sample
elements 2-27 function call A-17
environment 2-116 report 4-7
stage 2-126 Using

placeholders 1-22
wildcards 1-22

subsystem 2-128
system 2-131

type 2-134 Utility, CONAPI 1-4
Selection criteria for list elements 2-29
Shutting down API server 1-14 V

Signin element action 2-48
Site, list 2-121
Source location list package action summary 2-73

Validate components 2-62

Stage, list 2-125 W
Starting API server 1-14 Where-used, list components 2-104
Statement, CIMSGS1 4-3 Wildcard 1-22
Storing function call responses 1-6 Window, execution 2-62
Structures Writing
about 1-5 messages to message file 1-18
control 1-5, 2-3 responses to response file 1-19

list element 2-31

naming conventions 1-5

request 1-6

request extension 1-6

response 1-6
Submit package request 2-97
Subsystem, list 2-127
Summary, list package 2-72
Symbolic overrides 2-118
System, list 2-130

T

Target
location for list package summary 2-74
structure 2-31
Templates for COBOL function calls 1-16
Trace
diagnostic 4-9
facilities 4-2

X-8 API Guide

	Bookshelf
	API Guide
	Contents
	Chapter 1: Welcome to the Application Program Interface
	1.1 Overview
	1.1.1 Assumed Knowledge

	1.2 Endevor API Architecture
	1.3 API Structures
	1.3.1 The Control Structure
	1.3.2 The Request Structure
	1.3.3 The Request Extension Structure
	1.3.4 The Response Structure

	1.4 API Function Calls
	1.5 Initializing API Structures
	1.5.1 Assembler Programs
	1.5.2 COBOL Programs

	1.6 Starting Up and Shutting Down the API Server
	1.7 Calling the API from an Assembler Program
	1.8 Calling the API from a COBOL Program
	1.9 Checking API Return and Reason Codes
	1.10 Writing Messages to the Message File
	1.11 Writing Responses to a Response File
	1.12 Sample Applications
	1.13 Documentation Overview
	1.14 Name Masking
	1.14.1 Usage

	Chapter 2: API Function Calls
	2.1 Overview
	2.2 Control Structure
	2.2.1 AACTL Control Structure Fields

	2.3 API Function Calls
	2.3.1 Understanding Logical and Physical Mapping Requests

	2.4 Request Extension
	2.5 Add Element Action
	2.5.1 AEADD_ RQ Request Structure Fields

	2.6 Delete Element Action
	2.6.1 AEDEL_ RQ Request Structure Fields

	2.7 Extract Element and Component Data
	2.7.1 Element and Component Extraction Types
	2.7.2 AEELM_ RQ Request Structure Fields
	2.7.3 AEELM_ RS Response Structure Fields
	2.7.4 Element Extract and Component Data Record Layouts
	2.7.4.1 Element Extract, No Format Record Layout
	2.7.4.2 Element Extract, Browse Record Layout
	2.7.4.3 Element Extract, Change Record Layout
	2.7.4.4 Element Extract, History Record Layout
	2.7.4.5 Component Extract, Browse Record Layout
	2.7.4.6 Component Extract, Change Record Layout
	2.7.4.7 Component Extract, History Record Layout

	2.8 Generate Element Action
	2.8.1 AEGEN_ RQ Request Structure Fields

	2.9 List Element
	2.9.1 ALELM_ RQ Request Structure Fields
	2.9.1.1 Information About Action Options
	2.9.1.2 Information About Selection Criteria

	2.9.2 List Element Response Structures
	2.9.3 ALELM_ RS Response Structure Fields
	2.9.3.1 Information About the Last Action
	2.9.3.2 Information About the Element Base
	2.9.3.3 Information About the Element Delta (Last Level)
	2.9.3.4 Information About the Component List Base
	2.9.3.5 Information About the Component List Delta
	2.9.3.6 Information About the Last Element Move
	2.9.3.7 Information About the Last Add or Update Data Set
	2.9.3.8 Information About the Element Processor Execution
	2.9.3.9 Information About the Last Element Retrieve
	2.9.3.10 Information About the Package Last Executed Against the Element Source
	2.9.3.11 Information About the Package Last Executed Against the Element Outputs
	2.9.3.12 Information About the Last " FROM" Endevor Location
	2.9.3.13 Other Fields
	2.9.3.14 Information About the Package for which the Element is Locked
	2.9.3.15 ALELB_ RS Response Structure Fields
	2.9.3.16 ALELX_ RS Response Structure Fields

	2.10 Move Element Action
	2.10.1 AEMOV_ RQ Request Structure Fields

	2.11 Print Element Action
	2.11.1 AEPRE_ RQ Request Structure Fields

	2.12 Print Member Element Action
	2.12.1 AEPRM_ RQ Request Structure Fields

	2.13 Retrieve Element Action
	2.13.1 AERET_ RQ Request Structure Fields

	2.14 Signin Element Action
	2.14.1 AESIG_ RQ Request Structure Fields

	2.15 Transfer Element Action
	2.15.1 AETRA_ RQ Request Structure Fields

	2.16 Update Element Action
	2.16.1 AEUPD_ RQ Request Structure Fields

	2.17 Enterprise Package Function
	2.17.1 Enterprise Package Fields
	2.17.2 Enterprise Package Restrictions

	2.18 Approve Package
	2.18.1 APAPP_ RQ Request Structure Fields

	2.19 Backin Package
	2.19.1 APBKI_ RQ Request Structure Fields

	2.20 Backout Package
	2.20.1 APBKO_ RQ Request Structure Fields

	2.21 Cast Package
	2.21.1 APCAS_ RQ Request Structure Fields

	2.22 Commit Package
	2.22.1 APCOM_ RQ Request Structure Fields

	2.23 Define Package
	2.23.1 APDEF_ RQ Request Structure Fields
	2.23.1.1 Note Fields

	2.24 Delete Package
	2.24.1 APDEL_ RQ Request Structure Fields

	2.25 Deny Package
	2.25.1 APDEN_ RQ Request Structure Fields

	2.26 Execute Package
	2.26.1 APEXE_ RQ Request Structure Fields

	2.27 List Package Action Summary
	2.27.1 ALSUM_ RQ Request Structure Fields
	2.27.2 ALSUM_ RS Response Structure Fields
	2.27.2.1 Source Location Information
	2.27.2.2 Data Available When Location is C or A
	2.27.2.3 Data Available When Location is D, F or P
	2.27.2.4 Target Location Information
	2.27.2.5 Data Available When Location is C or A
	2.27.2.6 Data Available When Location is D, F or P
	2.27.2.7 Data Available When Location is: C, A, D, F or P

	2.28 List Package Approvers
	2.28.1 ALAPP_ RQ Request Structure Fields
	2.28.2 ALAPP_ RS Response Structure Fields

	2.29 List Package Backout Information
	2.29.1 ALBKO_ RQ Request Structure Fields
	2.29.2 ALBKO_ RS Response Structure Fields

	2.30 List Package Cast Report
	2.30.1 ALCAS_ RQ Request Structure Fields
	2.30.2 ALCAS_ RS Response Structure Fields

	2.31 List Package Correlation
	2.31.1 ALCOR_ RQ Request Structure Fields
	2.31.2 ALCOR_ RS Response Structure Fields

	2.32 List Package Header
	2.32.1 ALPKG_ RQ Request Structure Fields
	2.32.2 List Package Response Structure Fields
	2.32.3 ALPKG_ RS Response Structure Fields
	2.32.4 ALPKB_ RS Response Structure Fields

	2.33 List Package SCL
	2.33.1 ALSCL_ RQ Request Structure Fields
	2.33.2 ALSCL_ RS Response Structure Fields

	2.34 Package Correlation
	2.34.1 APCOR_ RQ Request Structure Fields

	2.35 Reset Package
	2.35.1 APRES_ RQ Request Structure Fields

	2.36 Submit Package Request
	2.36.1 APSUB_ RQ Request Structure Fields
	2.36.1.1 Jobcard Location Information
	2.36.1.2 Submit TO Location Information
	2.36.1.3 Action Options
	2.36.1.4 CA7 Action Options

	2.37 List Approver Group
	2.37.1 ALAGR_ RQ Request Structure Fields
	2.37.2 ALAGR_ RS Response Structure Fields

	2.38 List Approver Group Junctions
	2.38.1 ALAGJ_ RQ Request Structure Fields
	2.38.2 ALAGJ_ RS Response Structure Fields

	2.39 List Components/ Where- used
	2.39.1 ALCMP_ RQ Request Structure Fields
	2.39.1.1 Element Location Data-Request Type (E)
	2.39.1.2 Member Location Data-Request Type (M)
	2.39.1.3 Object Location Data-Request Type (O)
	2.39.1.4 Comment Location Data-Request Type (C)
	2.39.1.5 Output Filters-Request Type (C, E, M, O)
	2.39.1.6 Build Generate Action SCL

	2.39.2 ALCMP_ RS Response Structure Fields
	2.39.2.1 RECTYP 1 or 3 Format
	2.39.2.2 RECTYP 2 or 4 Format
	2.39.2.3 RECTYP 5 or 6 Format

	2.40 List Data Set
	2.40.1 ALDSN_ RQ Request Structure Fields
	2.40.2 ALDSN_ RS Response Structure Fields

	2.41 List Directory
	2.41.1 ALDIR_ RQ Request Structure Fields
	2.41.2 ALDIR_ RS Response Structure Fields

	2.42 List Environment
	2.42.1 ALENV_ RQ Request Structure Fields
	2.42.2 ALENV_ RS Response Structure Fields

	2.43 List Processor Group
	2.43.1 ALPGR_ RQ Request Structure Fields
	2.43.2 ALPGR_ RS Response Structure Fields

	2.44 List Site
	2.44.1 ALSIT_ RQ Request Structure Fields
	2.44.2 ALSIT_ RS Response Structure Fields

	2.45 List Stage
	2.45.1 ALSTG_ RQ Request Structure Fields
	2.45.2 ALSTG_ RS Response Structure Fields

	2.46 List Subsystem
	2.46.1 ALSBS_ RQ Request Structure Fields
	2.46.2 ALSBS_ RS Response Structure Fields

	2.47 List System
	2.47.1 ALSYS_ RQ Request Structure Fields
	2.47.2 ALSYS_ RS Response Structure Fields

	2.48 List Type
	2.48.1 ALTYP_ RQ Request Structure Fields
	2.48.2 ALTYP_ RS Response Structure Fields

	Chapter 3: API Return Codes and Reason Codes
	3.1 Overview
	3.2 Return Code and Reason Code Descriptions
	3.3 Error Messages

	Chapter 4: API Execution Reports and Trace Facilities
	4.1 Overview
	4.1.1 Execution Reports
	4.1.2 Trace Facilities

	4.2 API Execution Reports
	4.2.1 Define Package Action Function Call Sample Report
	4.2.2 Element Action Function Call Sample Report
	4.2.3 Inventory List Function Call Sample Report
	4.2.4 List Package Action Function Call Sample Reports
	4.2.5 Update Package Action Function Call Sample Reports

	4.3 The API Diagnostic Trace-BC1PAPI
	4.4 The API Internal Trace-EN$ TRAPI

	Appendix A: Sample API Programs
	A. 1 Overview
	A. 2 Executing an API Program
	A. 2.1 Description

	A. 3 Sample COBOL Program-CCIDRPT1
	A. 3.1 Description
	A. 3.2 CCIDRPT1 Output Report
	A. 3.3 JCL to Execute CCIDRPT1-BC1JRAPI

	A. 4 Sample List Environment Function Call-ENHAAPGM
	A. 4.1 Description
	A. 4.2 JCL to Execute ENHAAPGM-BC1JAPGM

	A. 5 Sample Element Action Function Call-ENHAEPGM
	A. 5.1 Description
	A. 5.2 JCL to Execute ENHAEPGM-BC1JEPGM

	A. 6 Sample List Package Action Function Call-ENHAPLST
	A. 6.1 Description
	A. 6.2 JCL to Execute ENHAPLST-BC1JPLST

	A. 7 Sample Update Package Action Function Call-ENHAPUPD
	A. 7.1 Description
	A. 7.2 JCL to Execute ENHAPUPD-BC1JPUPD

	A. 8 Sample Inventory List Function Call-ENTBJAPI
	A. 8.1 Description
	A. 8.2 JCL to Execute ENTBJAPI Š BC1JAAPI

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

